import time from tqdm import tqdm import helpers from helpers import print_output, initialize_logging from config import Configuration, data_config config = Configuration(True, True).parse() if not (config.train_match or config.train_transform): raise Exception('You must train for either matching or transformation recovery') start_time = str(int(time.time())) initialize_logging(start_time) print_output(config) num_workers = config.num_workers config.manualSeed = random.randint(1, 10000) # fix seed print_output("Random Seed: ", config.manualSeed) random.seed(config.manualSeed) torch.manual_seed(config.manualSeed) if config.bag_file: dataset = helpers.load_laser_dataset(config) elif config.bag_files: dataset = helpers.load_merged_laser_dataset(config) else: raise Exception("Must provide bag input")
default='train', help='path to a bag containing base and filtered scans.') parser.add_argument('--filtered_topic', type=str, default='/filtered', help='topic to look for filtered scans') parser.add_argument('--base_topic', type=str, default='/Cobot/Laser', help='topic to look for base scans') opt = parser.parse_args() start_time = str(int(time.time())) initialize_logging(start_time) print_output(opt) opt.manualSeed = random.randint(1, 10000) # fix seed print_output("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) dataset = LTFDataset(opt.bag_file, opt.base_topic, opt.filtered_topic, 200) ltf_model = SegNet(3, 2) ltf_model.load_state_dict(torch.load(opt.model)) ltf_model.eval() ltf_model = ltf_model.cuda() import matplotlib.pyplot as plt for original, filtered in dataset:
parser.add_argument('--dataset', type=str, required=True, help="dataset path") parser.add_argument('--distance_cache', type=str, default=None, help='cached overlap info to start with') parser.add_argument( '--exhaustive', type=bool, default=False, help='Whether or not to check the exhaustive list of all triplets') opt = parser.parse_args() start_time = str(int(time.time())) initialize_logging(start_time) print_output(opt) num_workers = execution_config['NUM_WORKERS'] opt.manualSeed = random.randint(1, 10000) # fix seed print_output("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) dataset = helpers.load_structured_dataset(opt.dataset, training_config['TRAIN_SET'], opt.distance_cache, opt.exhaustive) dataset[200] dataset[120] dataset[375]
import numpy as np import pickle import time import random from tqdm import tqdm sys.path.append(os.path.join(os.getcwd(), '..')) import helpers from helpers import initialize_logging, print_output from config import Configuration, execution_config, evaluation_config config = Configuration(False, True).parse() start_time = str(int(time.time())) initialize_logging(start_time, 'evaluate_') print_output(config) num_workers = int(execution_config['NUM_WORKERS']) config.manualSeed = random.randint(1, 10000) # fix seed print_output("Random Seed: ", config.manualSeed) random.seed(config.manualSeed) torch.manual_seed(config.manualSeed) scan_conv, scan_match, scan_transform = helpers.create_laser_networks( config.model_dir, config.model_epoch) scan_conv.eval() scan_match.eval() dataset = helpers.load_laser_dataset(config.bag_file, '', 0, config.distance_cache, config.edge_trimming)
help="dataset paths") parser.add_argument('--distance_cache', type=str, default=None, help='cached overlap info to start with') parser.add_argument( '--exhaustive', type=bool, default=False, help='Whether or not to check the exhaustive list of all triplets') opt = parser.parse_args() start_time = str(int(time.time())) initialize_logging(start_time) print_output(opt) num_workers = execution_config['NUM_WORKERS'] opt.manualSeed = random.randint(1, 10000) # fix seed print_output("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) datasets = [] name = '' for dataset in opt.datasets: ds = helpers.load_dataset(dataset, training_config['TRAIN_SET'], opt.distance_cache, opt.exhaustive) name += ds.dataset_info['name'] + '_' + ds.split + '_' datasets.append(ds)
default=False, help= "if included, publish evaluated triplets, as well as classification result." ) parser.add_argument( '--exhaustive', type=bool, default=False, help='Whether or not to check the exhaustive list of all triplets') parser.add_argument('--no_vis', action='store_true', help='when provided, dont visualize the PR curve') opt = parser.parse_args() start_time = str(int(time.time())) initialize_logging(start_time, 'evaluate_') print_output(opt) num_workers = int(execution_config['NUM_WORKERS']) opt.manualSeed = random.randint(1, 10000) # fix seed print_output("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) embedder = helpers.create_structured_embedder(opt.model) embedder.eval() with torch.no_grad(): dataset = helpers.load_structured_dataset( opt.dataset, evaluation_config['EVALUATION_SET'], opt.distance_cache, opt.exhaustive, True) batch_count = len(dataset) // execution_config['BATCH_SIZE']
from config import Configuration, data_config config = Configuration(True, True) config.add_argument( '--stats_file', type=str, help='path to file containing ground-truth uncertainty stats') config = config.parse() start_time = str(int(time.time())) initialize_logging(start_time) print_output(config) num_workers = config.num_workers config.manualSeed = random.randint(1, 10000) # fix seed print_output("Random Seed: ", config.manualSeed) random.seed(config.manualSeed) torch.manual_seed(config.manualSeed) if config.bag_file: dataset = helpers.load_uncertainty_dataset(config.bag_file, config.stats_file) elif config.bag_files: raise Exception("not implemented yet") # dataset = helpers.load_merged_laser_dataset(config.bag_files, config.name, config.augmentation_probability) else: