def show(self): self._update_phrases_counts() # print progress-bar off known_words progressBar(self._counters[Level.HIGH], self.all_count, magenta, 80) # count high View.print_title('Seen: ' + str(self.seen) + ' High: ' + str(self._counters[Level.HIGH]) + ' Mid: ' + str(self._counters[Level.MID]) + ' Low: ' + str(self._counters[Level.LOW]) + ' Unknown: ' + str(self._counters[Level.UNKNOWN]))
batch_elmo_inp, targets=batch_labels) model.train() batch_labels = batch_labels.cpu().detach().numpy() batch_lengths = batch_lengths.cpu().detach().numpy() ncorr, ntotal = batch_accuracy_func(batch_predictions, batch_labels, batch_lengths) batch_acc = ncorr / ntotal train_acc += batch_acc # update progress progressBar( batch_id + 1, int(np.ceil(len(train_data) / TRAIN_BATCH_SIZE)), [ "batch_time", "batch_loss", "avg_batch_loss", "batch_acc", "avg_batch_acc" ], [ time.time() - st_time, batch_loss, train_loss / (batch_id + 1), batch_acc, train_acc / (batch_id + 1) ]) print(f"\nEpoch {epoch_id} train_loss: {train_loss/(batch_id+1)}") # valid loss valid_loss = 0. valid_acc = 0. print("valid_data size: {}".format(len(valid_data))) valid_data_iter = batch_iter(valid_data, batch_size=VALID_BATCH_SIZE, shuffle=False) for batch_id, (batch_labels, batch_sentences) in enumerate(valid_data_iter):