def main(args): files = helpers.parse_flags(args) analyzer = Analyzer(helpers.read(files["input"])) if analyzer.try_analyze(): for warning in analyzer.warnings: print(warning) print("The file is fine, no error was found") print("\nCheck the", files["output"], "file for more information.") helpers.write(files["output"], analyzer.symbols) sys.exit(0) else: for warning in analyzer.warnings: print(warning) for error in analyzer.errors: print(error) if analyzer.failedAt == "Semantic": print("\nCheck the", files["output"], "file for more information.") helpers.write(files["output"], analyzer.symbols) sys.exit(1)
def search_record_by_file(self, filename): frames, fs, file_hash = read(filename, self.limit) matches = [] for d in frames: matches.extend(self.find_matches(d, fs=fs)) match = self.align_matches(matches) return match
def getConfigFile(fileName): session['fileName'] = fileName res = h.read(fileName) session["selectedFile"] = fileName if (res == "NOTJSON" or res == "NOTSCHEMA" or res == "NOSCHEMA"): session["data"] = {} else: session["data"] = res return jsonify(res)
def main(): B, L, D, scores, libraries = helpers.read('./data/d_tough_choices.txt') ansLibs = [] #libraries = [[id, [book1,book2,...]] , [id, [book1,book2,...]]] for i in range(0, (L - 1) / 2): lib = libraries[2 * i] ansLibs.append([lib[0], lib[4]]) helpers.output(ansLibs, "outputs/D_v1.txt")
def shutDownRunningFile(): d = session.get("data") dc = h.createDaqInstance(d) runningFile = h.read(r1.hgetall("runningFile")["fileName"]) allDOWN = True for p in runningFile['components']: rawStatus, timeout = dc.getStatus(p) status = h.translateStatus(rawStatus, timeout) if (not status == "DOWN"): allDOWN = False if (allDOWN): r1.hset("runningFile", "isRunning", 0) return jsonify("true") else: return jsonify("false")
def main(args): files = helpers.parse_flags(args) lines = helpers.read(files["input"]) lexer = Lexer() # No errors on file if lexer.try_tokenize(lines): print("The file is fine, no error was found") # Print errors on screen else: for err in lexer.get_errors(): print("*** ERROR on line", err.line, "***", err.reason, err.word) # Write to the file helpers.write(files["output"], lexer.get_all()) print("\nCheck the file", files["output"], "for more information") sys.exit(0)
def main(): B, L, D, scores, libraries = h.read( "../data/e_so_many_books.txt" ) # libraries is [id,NBooks,TDays,MShipsperday,[books]] # TODO Call get_points book_scores = get_book_point_lib(libraries, scores) #list.sort(libraries, key=lambda library:get_points(library,book_scores), reverse=True) tot_points = 0 # sort books by value and at total points to calculate average for lib in libraries: list.sort(lib[4], key=lambda book: book_scores[book], reverse=True) tot_points += get_points(lib, book_scores) average_points = tot_points / L list.sort( libraries, key=lambda library: get_points2(library, book_scores, average_points), reverse=True) ansLibs = [] day = 0 new_libraries = [] for lib in libraries: day_local = day + lib[2] # Add time to set up books_to_scan = [] while day_local < D: list.sort(lib[4], key=lambda book: book_scores[book], reverse=True) #sort books_to_scan.append(lib[4][0:lib[2]]) for i in range(lib[2]): if i < len(lib[4]): books_to_scan.append(lib[4][i]) book_scores[lib[4][i]] = 0 day_local += lib[2] #iterate over days new_libraries.append([lib[0], books_to_scan]) #print("Days total are: " + str(D)) for i in range(int((L - 1) / 2)): lib = new_libraries[2 * i] ansLibs.append([lib[0], lib[4]]) h.output(ansLibs, "../outputs/E_v1.txt")
in one forward/backward pass', required=True, type=int) args = parser.parse_args() dataset = args.dataset epochs = args.epochs batch_size = args.batch_size is_valid_dataset(dataset) logger.info("Reading in preprocessed training {0} dataset".format(dataset)) file_path = "{dir}{dataset}{suffix}".format(dir=DATADIR, dataset=dataset, suffix=TRAIN_FILE_SUFFIX) train_df = read(file_path) logger.info("Finished reading in preprocessed {0} dataset".format(dataset)) logger.info("preparing training data") split = descriptor_activation_split(train_df) logger.info("Generating model") model = generate_model(split.shape) logger.info("fitting model") model.fit(split.descriptors, split.act, epochs=epochs, batch_size=batch_size) logger.info("saving model")
if __name__ == "__main__": parser = argparse.ArgumentParser(description='Evaluate QSAR data') parser.add_argument('--dataset', help='Enter one of available datasets: {}'.format( ", ".join(DATASETS)), required=True) args = parser.parse_args() dataset = args.dataset is_valid_dataset(dataset) file_path = "{dir}{dataset}{suffix}".format(dir=DATADIR, dataset=dataset, suffix=TEST_FILE_SUFFIX) logger.info("Reading in preprocessed testing {0} dataset".format(dataset)) test_df = read(file_path) logger.info("Finished reading in preprocessed {0} dataset".format(dataset)) logger.info("Preparing testing data") split = descriptor_activation_split(test_df) logger.info("Loading {0} model".format(dataset)) model = load_model('{0}{1}.h5'.format('/data/', dataset), custom_objects={'r2': r2}) logger.info("Evaluating {0} model".format(dataset)) score = model.evaluate(split.descriptors, split.act) logger.info("R2 score {0}".format(score[1]))
parser = argparse.ArgumentParser(description='Preprocess QSAR data') parser.add_argument('--dataset', help='Enter one of available datasets: {}' .format(", ".join(DATASETS)), required=True) args = parser.parse_args() dataset = args.dataset is_valid_dataset(dataset) logger.info("Reading in {0} dataset".format(dataset)) train_file_path = "{dir}{dataset}{suffix}".format(dir=DATADIR, dataset=dataset, suffix=TRAIN_FILE_SUFFIX) test_file_path = "{dir}{dataset}{suffix}".format(dir=DATADIR, dataset=dataset, suffix=TEST_FILE_SUFFIX) train_df = read(train_file_path) test_df = read(test_file_path) logger.info("Finished reading in {0} dataset".format(dataset)) logger.info("Transforming {0} dataset".format(dataset)) start = time.time() train_df, test_df = Preprocessor(train_df, test_df).transform() logger.info("Transformation took {0} seconds".format( time.time() - start)) logger.info("Writing preprocessed {0} dataset to disk".format(dataset)) write(DATADIR, dataset, train_df) write(DATADIR, dataset, test_df) logger.info("Finished writing preprocessed {0} dataset ".format(dataset))
# Parses geographic population shapefiles into a list using pyshp # pyshp can be found at https://github.com/GeospatialPython/pyshp from helpers import dist, center, read if __name__ == "__main__": geogen = read() with open('popgridtest.dat', 'w') as f: for i in geogen: f.write('{}, {},{}\n'.format(i[0][0], i[0][1], i[1]))