コード例 #1
0
ファイル: rnn.py プロジェクト: chrissaher/NN-Projects
    def sample(self, parameters, char_to_ix, sample_limit=50):
        vocab_size, n_a = self.n_x, self.n_a

        Wx = parameters['Wx']
        Wa = parameters['Wa']
        Wy = parameters['Wy']
        b = parameters['b']
        by = parameters['by']

        x = np.zeros((vocab_size, 1))
        a_prev = np.zeros((n_a, 1))
        idx = -1
        indices = []
        counter = 0
        newline_idx = char_to_ix['\n']

        while idx != newline_idx and counter != sample_limit:
            a = np.tanh(np.dot(Wx, x) + np.dot(Wa, a_prev) + b)
            y = softmax(np.dot(Wy, a) + by)

            idx = np.random.choice(list(range(vocab_size)), p=y.ravel())
            indices.append(idx)

            x = np.zeros((vocab_size, 1))
            x[idx] = 1
            a_prev = a

            counter += 1

        if counter == 50:
            indices.append(newline_idx)
        return indices
コード例 #2
0
    def step(self, inputs, states):
        vP_t = inputs
        hP_tm1 = states[0]
        _ = states[1:3]  # ignore internal dropout/masks
        vP, WP_v, WPP_v, v, W_g2 = states[3:8]
        vP_mask, = states[8:]

        WP_v_Dot = K.dot(vP, WP_v)
        WPP_v_Dot = K.dot(K.expand_dims(vP_t, axis=1), WPP_v)

        s_t_hat = K.tanh(WPP_v_Dot + WP_v_Dot)
        s_t = K.dot(s_t_hat, v)
        s_t = K.batch_flatten(s_t)

        a_t = softmax(s_t, mask=vP_mask, axis=1)

        c_t = K.batch_dot(a_t, vP, axes=[1, 1])

        GRU_inputs = K.concatenate([vP_t, c_t])
        g = K.dot(GRU_inputs, W_g2)
        GRU_inputs = g * GRU_inputs

        hP_t, s = super(SelfAttnGRU, self).step(GRU_inputs, states)

        return hP_t, s
コード例 #3
0
    def predict(self, molecules, return_prob=True):

        molecules = deepcopy(molecules)

        # Binarize input
        if self.binary:
            molecules = self.binarize(molecules)

        predictions = []
        probabilities = []

        for molecule in molecules:
            P = [0] * self.num_classes
            for c in self.classes:
                # add log prior
                P[c] = np.log(self.P_c[c])

                for atom in molecule:
                    if atom >= 0:
                        # calculate log likelihood. Molecules has pad as index 0, so shift it one
                        P[c] += np.log(self.p_w_given_c[int(atom), c])

            # normalize the posterior distribution, using softmax
            P = softmax(P)
            predictions.append(np.argmax(P))
            probabilities.append(P)
        if return_prob:
            return predictions, probabilities
        return predictions
コード例 #4
0
ファイル: app.py プロジェクト: monet-slinky/ByteSight
def run_inference(inf_file):
    # Preprocessing of the image happens here
    img = load_image(inf_file)
    print("Image Loaded")
    img = make_square(img)
    img = augment(prep, img)
    print("Transformations done")
    img = img.transpose(-1, 0, 1).astype(np.float32)
    img = img.reshape(-1, CHANNELS, IMG_WIDTH, IMG_HEIGHT)

    # Inferencing starts here
    sess = onnxruntime.InferenceSession("./best_acc.onnx")
    print("The model expects input shape: ", sess.get_inputs()[0].shape)
    print("The shape of the Image is: ", img.shape)
    input_name = sess.get_inputs()[0].name

    result = sess.run(None, {input_name: img})
    prob_array = result[0][0]
    print("Prob Array ", prob_array)
    prob = max(softmax(result[0][0]))
    print("Prob ", prob)
    species = tf.argmax(prob_array.ravel()[:10]).numpy()
    print("Class Label ", species)
    print("Spec ", CLASS_MAP[species][1])
    string_label = CLASS_MAP[species][1].split(" ")
    return (string_label[0], string_label[1], str(prob), color_code(prob))
コード例 #5
0
    def feedForward(self, inputRow):
        hiddenNet = (self.hiddenLayerWeights @ inputRow) + self.hiddenLayerBiases
        hiddenActivation = self.activationFun(hiddenNet)
        outputNet = (self.outputLayerWeights @ hiddenActivation) + self.outputLayerBiases
        outputActivation = helpers.softmax(outputNet)
        
        self.hiddenLayerNetValues = hiddenNet
        self.hiddenLayerActivations.append(hiddenActivation)
        self.outputLayerNetValues = outputNet
        self.outputLayerActivations.append(outputActivation)

        if self.useNag:
            hiddenNagNet = ((self.hiddenLayerWeights - self.hiddenMomentum) @ inputRow) + (self.hiddenLayerBiases - self.hiddenBiasMomentum)
            outputNagNet = ((self.outputLayerWeights - self.outputMomentum) @ hiddenActivation) + (self.outputLayerBiases - self.outputBiasMomentum)
            outputNagActivation = helpers.softmax(outputNagNet)
            self.hiddenNagNetValues = hiddenNagNet
            self.outputNagActivation = outputNagActivation

        return outputActivation
コード例 #6
0
ファイル: rnn_cell.py プロジェクト: chrissaher/NN-Projects
    def forward(self, xt, a_prev, parameters):
        Wx = parameters['Wx']
        Wa = parameters['Wa']
        Wy = parameters['Wy']
        b = parameters['b']
        by = parameters['by']

        a_next = np.tanh(np.dot(Wx, xt) + np.dot(Wa, a_prev) + b)
        yt = softmax(np.dot(Wy, a_next) + by)
        cache = {'a_prev': a_prev, 'a_next': a_next, 'xt': xt, 'yt': yt}
        return a_next, yt
コード例 #7
0
    def call(self, inputs, mask=None):
        assert (isinstance(inputs, list) and len(inputs) == 5)
        uQ, WQ_u, WQ_v, v, VQ_r = inputs
        uQ_mask = mask[0] if mask is not None else None

        ones = K.ones_like(K.sum(uQ, axis=1, keepdims=True))  # (B, 1, 2H)
        s_hat = K.dot(uQ, WQ_u)
        s_hat += K.dot(ones, K.dot(WQ_v, VQ_r))
        s_hat = K.tanh(s_hat)
        s = K.dot(s_hat, v)
        s = K.batch_flatten(s)

        a = softmax(s, mask=uQ_mask, axis=1)

        rQ = K.batch_dot(uQ, a, axes=[1, 1])

        return rQ
コード例 #8
0
    def forward_pass(self, inp):

        for ix in range(len(inp)):
            if inp[ix] == 0:
                self.activation[0][ix] = 1
            else:
                self.activation[0][ix] = 0

        self.X = self.activation
        self.L1 = np.tanh(np.dot(self.X, self.W1))
        self.L2 = np.tanh(np.dot(self.L1, self.W2))
        self.Y = softmax(np.dot(self.L2, self.W3))
        self.y_out = []
        for ix in range(self.Y.shape[1]):
            self.y_out.append(self.Y[0][ix] * self.activation[0][ix])
        self.OUT = np.argmax(self.y_out)
        return self.OUT
コード例 #9
0
    def step(self, inputs, states):
        # input
        ha_tm1 = states[0]  # (B, 2H)
        _ = states[1:3]  # ignore internal dropout/masks
        hP, WP_h, Wa_h, v = states[3:7]  # (B, P, 2H)
        hP_mask, = states[7:8]

        WP_h_Dot = K.dot(hP, WP_h)  # (B, P, H)
        Wa_h_Dot = K.dot(K.expand_dims(ha_tm1, axis=1), Wa_h)  # (B, 1, H)

        s_t_hat = K.tanh(WP_h_Dot + Wa_h_Dot)  # (B, P, H)
        s_t = K.dot(s_t_hat, v)  # (B, P, 1)
        s_t = K.batch_flatten(s_t)  # (B, P)
        a_t = softmax(s_t, mask=hP_mask, axis=1)  # (B, P)
        c_t = K.batch_dot(hP, a_t, axes=[1, 1])  # (B, 2H)

        GRU_inputs = c_t
        ha_t, (ha_t_, ) = super(PointerGRU, self).step(GRU_inputs, states)

        return a_t, [ha_t]
コード例 #10
0
ファイル: app.py プロジェクト: Zzcool8/ByteSightNoCrop
def run_inference(inf_file):
    # Preprocessing of the image happens here
    img = load_image(inf_file)
    originalimg = img
    #Cropping line is below, SHOULD NOT BE INCLUDED IN THIS VERSION
    #useless, img, status=cropImage(impath, 'm', labelsfile, 21, 0.08)
    print("Image Loaded")
    img = make_square(img)
    img = augment(prep, img)
    print("Transformations done")
    img = img.transpose(-1, 0, 1).astype(np.float32)
    img = img.reshape(-1, CHANNELS, IMG_WIDTH, IMG_HEIGHT)

    # Inferencing starts here
    sess = onnxruntime.InferenceSession("./best_acc.onnx")
    print("The model expects input shape: ", sess.get_inputs()[0].shape)
    print("The shape of the Image is: ", img.shape)
    input_name = sess.get_inputs()[0].name

    result = sess.run(None, {input_name: img})
    prob_array = result[0][0]
    print("Prob Array ", prob_array)
    prob = max(softmax(result[0][0]))
    print("Prob ", prob)
    species = tf.argmax(prob_array.ravel()[:20]).numpy()
    print("Class Label ", species)
    print("Spec ", CLASS_MAP[species][1])
    string_label = CLASS_MAP[species][1].split(" ")

    #fullfilename = mosquitoid + "_" + picnum + "_" + string_label[0] + "_" + string_label[1]
    #fullbucket = 'photostakenduringpilotstudy'
    #s3_file = 'PilotStudy'
    #file = cv2.imwrite(fullfilename, originalimg)
    #upload_to_aws(file, fullbucket , s3_file)
    ##upload_file(file, fullbucket)

    return (string_label[0], string_label[1], str(prob), color_code(prob))
コード例 #11
0
    def step(self, inputs, states):
        uP_t = inputs
        vP_tm1 = states[0]
        _ = states[1:3]  # ignore internal dropout/masks
        uQ, WQ_u, WP_v, WP_u, v, W_g1 = states[3:9]
        uQ_mask, = states[9:10]

        WQ_u_Dot = K.dot(uQ, WQ_u)  #WQ_u
        WP_v_Dot = K.dot(K.expand_dims(vP_tm1, axis=1), WP_v)  #WP_v
        WP_u_Dot = K.dot(K.expand_dims(uP_t, axis=1), WP_u)  # WP_u

        s_t_hat = K.tanh(WQ_u_Dot + WP_v_Dot + WP_u_Dot)

        s_t = K.dot(s_t_hat, v)  # v
        s_t = K.batch_flatten(s_t)
        a_t = softmax(s_t, mask=uQ_mask, axis=1)
        c_t = K.batch_dot(a_t, uQ, axes=[1, 1])

        GRU_inputs = K.concatenate([uP_t, c_t])
        g = K.sigmoid(K.dot(GRU_inputs, W_g1))  # W_g1
        GRU_inputs = g * GRU_inputs
        vP_t, s = super(QuestionAttnGRU, self).step(GRU_inputs, states)

        return vP_t, s