コード例 #1
0
def training_curve(X, y, model):
    def mlp_databalancing(_X, _y, sampling_strategy):
        if sampling_strategy == SamplingStrategy.UNDERSAMPLING:
            _X, _y = RandomUnderSampler(random_state=SEED).fit_resample(_X, _y)
        elif sampling_strategy == SamplingStrategy.OVERSAMPLING:
            _X, _y = SMOTE(random_state=SEED, n_jobs=-1).fit_resample(_X, _y)
        return _X, _y

    SPLIT_AND_VALIDATE = True  # If False, train with all data
    SAMPLING_STRATEGY = SamplingStrategy.OVERSAMPLING

    with timing():
        # Custom code for databalancing for MLP, since imblearn pipeline don't return keras-history
        if SPLIT_AND_VALIDATE:
            X_train, X_val, y_train, y_val = train_test_split(
                X, y, test_size=0.1, random_state=SEED)

            if SAMPLING_STRATEGY != SamplingStrategy.NONE:
                X_train, y_train = mlp_databalancing(
                    X_train, y_train, SAMPLING_STRATEGY)

            history = model.fit(X_train, y_train, epochs=num_epochs,
                                batch_size=batch_size, validation_data=(X_val, y_val))
        else:
            X, y = mlp_databalancing(X, y, SAMPLING_STRATEGY)
            history = model.fit(X, y, epochs=num_epochs,
                                batch_size=batch_size, verbose=0)

        plot_learning_curve_keras(history)
コード例 #2
0
def evaluate(X, y, model):
    with timing():
        scores, averages = evaluate_model(X, y, model)
        print(scores)
        print(f'Averages: {averages}')

        confusion_matrix(X, y, model, XGBOOST_VISUALIZATION_PATH)
コード例 #3
0
def evaluate(X, y):
    with timing():
        model_for_evaluation = KerasClassifier(
            build_fn=create_model, epochs=num_epochs, batch_size=batch_size, verbose=0)
        model = create_pipeline(
            model_for_evaluation, sampling_strategy=SamplingStrategy.OVERSAMPLING, y=y)
        scores, averages = evaluate_model(X, y, model, gpu_mode=True)
        print('\n\n', scores)
        print(f'Averages: {averages}')

        confusion_matrix(X, y, model, MLP_VISUALIZATION_PATH)
コード例 #4
0
def training_curve(X, y, model):
    with timing():
        plot_learning_curve(X, y, model, XGBOOST_VISUALIZATION_PATH)