def write_results_to_file(self, results): """ Write results to CSV file""" rows = [] try: for item in results: mode, gamma, c, ngram, bow, tuples = item f1_avg, f1_array = tuples if isinstance(gamma, float): gamma = "%.4f" % gamma if isinstance(c, float): c = "%.0f" % c f1_avg_4f = "%.4f" % f1_avg metriclist = self.string_metrics(f1_array) row = [mode, gamma, c, ngram, bow, f1_avg_4f] row += metriclist rows.append(row) except TypeError: print "Error: Type of parameter result" print results helpers.write_to_csv(self.RESULTFILE, "a", rows)
def write_begin(self): """ Write header for results to CSV file """ # Create headers for rounds list_roundnr = [] for i in range(1, self.CROSS_VALIDATION + 1): roundnr_string = "Round %i" % i list_roundnr.append(roundnr_string) headers = [["MODE", "GAMMA", "C", "NGRAM", "BOW", "F1 AVG"]] rows = [headers[0] + list_roundnr] helpers.write_to_csv(self.RESULTFILE, "wb", rows)
def main(): performances_df = get_performances_df() write_to_csv(performances_df, 'data', 'its', 'performances.csv') title_index_df = get_title_index_df() write_to_csv(title_index_df, 'data', 'its', 'title-index.csv') tweets_df = get_tweets_df() write_to_csv(tweets_df, 'data', 'its', 'tweets.csv') sheets_df = get_sheets_df() write_to_csv(sheets_df, 'data', 'its', 'sheets.csv')
def main(): logger.info( "Starting data extraction for self-stabilization overhead experiment") exec_time_series = api.get_time_series_for_q(Q_EXEC_TIME) msgs_sent_time_series = api.get_time_series_for_q(Q_MSGS_SENT) bytes_sent_time_series = api.get_time_series_for_q(Q_BYTES_SENT) if len(exec_time_series) == 0: logger.warning("No results found, quitting") return data_points = transform(exec_time_series, msgs_sent_time_series, bytes_sent_time_series) csv_path = helpers.write_to_csv(EXPERIMENT, data_points) snapshot_path = helpers.get_snapshot() helpers.collect_to_res_folder(EXPERIMENT, [csv_path, snapshot_path]) helpers.cleanup()
def main(url): df = get_annotations_df(url) write_to_csv(df, 'data', 'annotations.csv')
def main(): df = get_sheets_df() write_to_csv(df, 'data', 'its', 'sheets.csv')
weekend_signup_ratio) signup_events = gse.generate_signup_events(user_table, signup_event_list, start, end, starting_flow, ending_flow, step_time, weekend_signup_flow_ratio) login_events = gle.generate_login_events( signup_events[0], signup_event_list, start_user_dist, end_user_dist, starts_odds_of_returning, end_odds_of_returning, start, end, start_days_to_return, end_days_to_return, weekend_login_ratio) events = login_events events = gae.generate_arbitrary_events(events, event_params_from_login) events = gae.generate_arbitrary_events(events, event_params_from_view_company) events = gtt.generate_test_treaments(events, test_treatment_params) user_table = signup_events[1] # billing_table = gb.generate_billing_table(user_table,company_dist,start_monetize_rate,end_monetize_rate,start_churn_rate,end_churn_rate, # contract_length,contract_range,start,end) event_table = events ## Clean and write to CSV clean_user_table = h.prepare_table(user_table, user_headers, user_include) clean_event_table = h.prepare_table(event_table, event_headers, event_include) # clean_billing_table = h.prepare_table(billing_table,billing_headers,billing_include) h.write_to_csv("fake_dimension_users.csv", clean_user_table) h.write_to_csv("fake_fact_events.csv", clean_event_table) # h.write_to_csv("fake_dimension_subscriptions.csv",clean_billing_table)
def save_to_csv(self, proxies): write_to_csv(self.csv_path, proxies)
key=lambda m: float(m["metric"]["exp_param"])) for i in range(len(conv_lat_asc)): # if int(conv_lat_asc[i]["metric"]["view"]) != int(msgs_sent_asc[i]["metric"]["exp_param"]): # raise ValueError("Results not matching") conv_lat = str(float(conv_lat_asc[i]["value"][1])).replace(".", ",") view = int(conv_lat_asc[i]["metric"]["view"]) msgs_sent = int(msgs_sent_asc[i]["value"][1]) bts_sent = int(bts_sent_asc[i]["value"][1]) data_points.append({ "old_view": view, "conv_lat": conv_lat, "msgs_sent": msgs_sent, "bytes_sent": bts_sent }) # build key:val pairs for data points and return return data_points if __name__ == "__main__": logger.info("Starting data extraction for convergence latency experiment") conv_lat_time_series = api.get_time_series_for_q(Q_CONV_LAT) msgs_sent_time_series = api.get_time_series_for_q(Q_MSGS_SENT) bytes_sent_time_series = api.get_time_series_for_q(Q_BYTES_SENT) data_points = transform(conv_lat_time_series, msgs_sent_time_series, bytes_sent_time_series) csv_path = helpers.write_to_csv(EXPERIMENT, data_points) snapshot_path = helpers.get_snapshot() helpers.collect_to_res_folder(EXPERIMENT, [csv_path, snapshot_path]) helpers.cleanup()
def main(): new_df = get_new_df() write_to_csv(new_df, 'data', 'cac', 'new.csv') ingested_df = get_ingested_df() write_to_csv(ingested_df, 'data', 'cac', 'ingested.csv')
event_params_from_view_company = [start,end,from_event,sequence_type,event_list,start_event_distribution,end_event_distribution,start_odds_to_continue, end_odds_to_continue,start_number_of_events,end_number_of_events] ## MAKE DATA user_table = gu.generate_user_table(users,start,end,monthly_growth,weekend_signup_ratio) signup_events = gse.generate_signup_events(user_table,signup_event_list,start,end,starting_flow,ending_flow,step_time,weekend_signup_flow_ratio) login_events = gle.generate_login_events(signup_events[0],signup_event_list,start_user_dist,end_user_dist,starts_odds_of_returning, end_odds_of_returning,start,end,start_days_to_return,end_days_to_return,weekend_login_ratio) events = login_events events = gae.generate_arbitrary_events(events,event_params_from_login) events = gae.generate_arbitrary_events(events,event_params_from_view_company) events = gtt.generate_test_treaments(events,test_treatment_params) user_table = signup_events[1] # billing_table = gb.generate_billing_table(user_table,company_dist,start_monetize_rate,end_monetize_rate,start_churn_rate,end_churn_rate, # contract_length,contract_range,start,end) event_table = events ## Clean and write to CSV clean_user_table = h.prepare_table(user_table,user_headers,user_include) clean_event_table = h.prepare_table(event_table,event_headers,event_include) # clean_billing_table = h.prepare_table(billing_table,billing_headers,billing_include) h.write_to_csv("fake_dimension_users.csv",clean_user_table) h.write_to_csv("fake_fact_events.csv",clean_event_table) # h.write_to_csv("fake_dimension_subscriptions.csv",clean_billing_table)
def main(): df = get_title_index_df() write_to_csv(df, 'data', 'its', 'title-index.csv')
def main(obj): df = get_pybossa_df(obj) write_to_csv(df, 'data', '{}.csv'.format(obj))
def main(): df = get_performances_df() write_to_csv(df, 'data', 'its', 'performances.csv')
if len(tuple(dict[date][i]['checkin'])) != len( tuple(dict[date][i]['checkout'])): continue else: in_time = dict[date][i]['checkin'] out_time = dict[date][i]['checkout'] length = len(dict[date][i]['checkin']) if length > 0 and len(in_time) > 0: runningSum = 0 for l, i, k in zip(range(length), range(0, length, 2), range(1, length, 2)): to_a['in' + str((l + 1))] = in_time[i] to_a['out' + str(l + 1)] = out_time[k] runningSum += helpers.to_decimal( out_time[k]) - helpers.to_decimal(in_time[i]) to_a['Raw_hours'] = runningSum to_a['hoursWorked_str'] = helpers.to_ftime(runningSum) # Writing to array for_csv.append(to_a) print(len(for_csv)) print(for_csv) row_names = [ "employeeID", "date", "in1", "out1", "in2", "out2", "in3", "out3", "in4", "out4", "in5", "out5", 'hoursWorked_str', 'Raw_hours' ] helpers.write_to_csv(for_csv, 'may', row_names)
from definitions import PATH files = sorted(glob.glob(PATH["IMAGE_IN"] + "*.png")) processed = glob.glob(PATH["IMAGE_OUT"] + "*.png") print('Current progress is {}%'.format((len(processed) / len(files)) * 100)) for file in files: if helpers.is_processed(file, processed): continue file_properties = helpers.get_properties_from_filename(file) img = Image.open(file) file_properties["original_size"] = img.size # crop the image in one smaller image of 256x256 crop_dimensions = file_properties["crop"] img_crop = img.crop(crop_dimensions) file_properties["name"] = '{}-{}-[{}].png'.format( file_properties["id"], file_properties["crop"], str(file_properties["slice"])) cw = CountingWindow(img_crop) cw.open_window() file_properties["count"], file_properties["locations"] = cw.get_results() if file_properties["count"] is not None and file_properties[ "locations"] is not None: helpers.write_to_csv(file_properties, PATH["CSV"]) img_crop.save(PATH["IMAGE_OUT"] + file_properties["name"])