def test_resample_Tsky(self): fqs = np.linspace(0.1, 0.2, 100) lsts = np.linspace(0, 2 * np.pi, 200) tsky = noise.resample_Tsky(fqs, lsts) self.assertEqual(tsky.shape, (200, 100)) self.assertTrue(np.all(tsky[0] == tsky[1])) self.assertFalse(np.all(tsky[:, 0] == tsky[:, 1])) # import uvtools, pylab as plt # uvtools.plot.waterfall(tsky); plt.show() tsky = noise.resample_Tsky(fqs, lsts, Tsky_mdl=noise.HERA_Tsky_mdl["xx"]) self.assertEqual(tsky.shape, (200, 100)) self.assertFalse(np.all(tsky[0] == tsky[1])) self.assertFalse(np.all(tsky[:, 0] == tsky[:, 1]))
def test_resample_Tsky(self): fqs = np.linspace(0.1, 0.2, 100) lsts = np.linspace(0, 2 * np.pi, 200) tsky = noise.resample_Tsky(fqs, lsts) self.assertEqual(tsky.shape, (200, 100)) self.assertTrue(np.all(tsky[0] == tsky[1])) self.assertFalse(np.all(tsky[:, 0] == tsky[:, 1])) tsky = noise.resample_Tsky(fqs, lsts, Tsky_mdl=noise.HERA_Tsky_mdl["xx"]) self.assertEqual(tsky.shape, (200, 100)) self.assertFalse(np.all(tsky[0] == tsky[1])) self.assertFalse(np.all(tsky[:, 0] == tsky[:, 1]))
def test_sky_noise_jy(self): fqs = np.linspace(0.1, 0.2, 100) lsts = np.linspace(0, 2 * np.pi, 500) omp = noise.bm_poly_to_omega_p(fqs) tsky = noise.resample_Tsky(fqs, lsts) jy2T = noise.jy2T(fqs, omega_p=omp) / 1e3 jy2T.shape = (1, -1) nos_jy = noise.sky_noise_jy(tsky, fqs, lsts, inttime=10.7, omega_p=omp) self.assertEqual(nos_jy.shape, (500, 100)) np.testing.assert_allclose(np.average(nos_jy, axis=0), 0, atol=0.7) scaling = np.average(tsky, axis=0) / jy2T np.testing.assert_allclose(np.std(nos_jy, axis=0) / scaling * np.sqrt(1e6 * 10.7), 1.0, atol=0.1) np.random.seed(0) nos_jy = noise.sky_noise_jy(tsky, fqs, lsts, inttime=None, omega_p=omp) np.testing.assert_allclose( np.std(nos_jy, axis=0) / scaling * np.sqrt(1e6 * aipy.const.sidereal_day / 500), 1.0, atol=0.1) np.random.seed(0) nos_jy = noise.sky_noise_jy(tsky, fqs, lsts, B=.1, inttime=10.7, omega_p=omp) np.testing.assert_allclose(np.std(nos_jy, axis=0) / scaling * np.sqrt(1e8 * 10.7), 1.0, atol=0.1)
def generate_noise(self): omega_p = noise.bm_poly_to_omega_p(self.fqs) tsky = noise.resample_Tsky(self.fqs, self.lsts, Tsky_mdl=noise.HERA_Tsky_mdl['xx']) t_rx = 150. return noise.sky_noise_jy(tsky + t_rx, self.fqs, self.lsts, omega_p)
def gen_HERA_vis(self, tsamples, fsamples, bl_len_ns=400., add_rfi=False, inject_frb=False): #### Convert time samples to appropriate LST hours where 60 time samples = 10 min #### !!!! LST is in rads not hrs sph = 60. / .1667 lst_add = tsamples / sph fqs = np.linspace(.1, .2, fsamples, endpoint=False) lsts = np.linspace(np.pi / 2., np.pi / 2. + lst_add, tsamples) times = lsts / (2. * np.pi) * a.const.sidereal_day #### FOREGROUNDS #### # Diffuse Tsky_mdl = noise.HERA_Tsky_mdl['xx'] vis_fg_diffuse = foregrounds.diffuse_foreground( Tsky_mdl, lsts, fqs, bl_len_ns) # Point Sources vis_fg_pntsrc = foregrounds.pntsrc_foreground(lsts, fqs, bl_len_ns, nsrcs=1000) # FRBs vis_fg_frb = np.asarray(gen_simulated_frb(NFREQ=1024, NTIME=61, width=1., sim=True, delta_t=10., freq=(200, 100), FREQ_REF=150., fluence=(60., 600.), scintillate=True, dm=(300., 1800.))[0].T, dtype=np.complex128) vis_fg_frb *= np.exp( 1j * (lsts[30] + .1 * np.pi * np.random.randn(61, 1024))) # Combined if inject_frb: vis_fg = vis_fg_diffuse + vis_fg_pntsrc + vis_fg_frb else: vis_fg = vis_fg_diffuse + vis_fg_pntsrc #### Noise #### tsky = noise.resample_Tsky(fqs, lsts, Tsky_mdl=noise.HERA_Tsky_mdl['xx']) t_rx = 150. nos_jy = noise.sky_noise_jy(tsky + t_rx, fqs, lsts) # Add Noise vis_fg_nos = vis_fg + nos_jy #### RFI #### if add_rfi: g = sigchain.gen_gains(fqs, [1, 2, 3]) with open(add_rfi, 'r') as infile: RFIdict = yaml.load(infile) rfi = RFI_Sim(RFIdict) rfi.applyRFI() self.rfi_true = rfi.getFlags() vis_fg_nos_rfi = np.copy(vis_fg_nos) + rfi.getRFI() vis_total_rfi = sigchain.apply_gains(vis_fg_nos_rfi, g, (1, 2)) # add cross-talk xtalk = sigchain.gen_xtalk(np.linspace(.1, .2, 1024), amplitude=.001) vis_total_rfi = sigchain.apply_xtalk(vis_total_rfi, xtalk) self.data_rfi = vis_total_rfi else: g = sigchain.gen_gains(fqs, [1, 2, 3]) vis_total_norfi = sigchain.apply_gains(vis_fg_nos, g, (1, 2)) self.data = vis_total_norfi
for k, v in zip(idxs, ants): antpos[k] = v reds = redcal.get_pos_reds(antpos) # Extract all ants ants = list(set([ant for bls in reds for bl in bls for ant in bl])) # Generate gains gains = sigchain.gen_gains(fqs, ants, dly_rng=(-1, 1)) true_vis, data = {}, {} # Generate sky model--common for all ants Tsky_mdl = noise.HERA_Tsky_mdl['xx'] tsky = noise.resample_Tsky(fqs, lsts, Tsky_mdl=noise.HERA_Tsky_mdl['xx']) fp = h5py.File('fake_vis.hdf5', 'a') fp.attrs.create('Nants', 37) fp.create_dataset('fqs', data=fqs) fp.create_dataset('lsts', data=lsts) for a in ants: fp.create_dataset('g%d' % a, data=gains[a]) for bls in reds: for (i, j) in bls: data[(i, j)] = fp.create_dataset('%d-%d' % (i, j), (len(lsts), len(fqs)), chunks=True,