def evaluate(self, img_ids=None): """ Args: img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset """ if self._distributed: comm.synchronize() predictions = comm.gather(self._predictions, dst=0) predictions = list(itertools.chain(*predictions)) if not comm.is_main_process(): return {} else: predictions = self._predictions if len(predictions) == 0: self._logger.warning( "[HERBEvaluator] Did not receive valid predictions.") return {} if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join(self._output_dir, "instances_predictions.pth") with PathManager.open(file_path, "wb") as f: torch.save(predictions, f) self._results = OrderedDict() self._eval_predictions(predictions, img_ids=img_ids) # Copy so the caller can do whatever with results #return copy.deepcopy(self._results) return None
def _distributed_worker( local_rank, main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args, timeout=DEFAULT_TIMEOUT, ): assert torch.cuda.is_available(), "cuda is not available. Please check your installation." global_rank = machine_rank * num_gpus_per_machine + local_rank try: dist.init_process_group( backend="NCCL", init_method=dist_url, world_size=world_size, rank=global_rank, timeout=timeout, ) except Exception as e: logger = logging.getLogger(__name__) logger.error("Process group URL: {}".format(dist_url)) raise e # synchronize is needed here to prevent a possible timeout after calling init_process_group # See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172 comm.synchronize() assert num_gpus_per_machine <= torch.cuda.device_count() torch.cuda.set_device(local_rank) # Setup the local process group (which contains ranks within the same machine) assert comm._LOCAL_PROCESS_GROUP is None num_machines = world_size // num_gpus_per_machine for i in range(num_machines): ranks_on_i = list(range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine)) pg = dist.new_group(ranks_on_i) if i == machine_rank: comm._LOCAL_PROCESS_GROUP = pg main_func(*args)
def _do_eval(self): results = self._func() if results: assert isinstance( results, dict ), "Eval function must return a dict. Got {} instead.".format( results) flattened_results = flatten_results_dict(results) for k, v in flattened_results.items(): try: v = float(v) except Exception as e: raise ValueError( "[EvalHook] eval_function should return a nested dict of float. " "Got '{}: {}' instead.".format(k, v)) from e self.trainer.storage.put_scalars(**flattened_results, smoothing_hint=False) # Evaluation may take different time among workers. # A barrier make them start the next iteration together. comm.synchronize()
def do_train(cfg, model, resume=False): model.train() optimizer = build_optimizer(cfg, model) scheduler = build_lr_scheduler(cfg, optimizer) checkpointer = DetectionCheckpointer(model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler) start_iter = (checkpointer.resume_or_load( cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1) max_iter = cfg.SOLVER.MAX_ITER periodic_checkpointer = PeriodicCheckpointer(checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter) writers = default_writers(cfg.OUTPUT_DIR, max_iter) if comm.is_main_process() else [] # compared to "train_net.py", we do not support accurate timing and # precise BN here, because they are not trivial to implement in a small training loop data_loader = build_detection_train_loader(cfg) logger.info("Starting training from iteration {}".format(start_iter)) with EventStorage(start_iter) as storage: for data, iteration in zip(data_loader, range(start_iter, max_iter)): storage.iter = iteration loss_dict = model(data) losses = sum(loss_dict.values()) assert torch.isfinite(losses).all(), loss_dict loss_dict_reduced = { k: v.item() for k, v in comm.reduce_dict(loss_dict).items() } losses_reduced = sum(loss for loss in loss_dict_reduced.values()) if comm.is_main_process(): storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced) optimizer.zero_grad() losses.backward() optimizer.step() storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False) scheduler.step() if (cfg.TEST.EVAL_PERIOD > 0 and (iteration + 1) % cfg.TEST.EVAL_PERIOD == 0 and iteration != max_iter - 1): do_test(cfg, model) # Compared to "train_net.py", the test results are not dumped to EventStorage comm.synchronize() if iteration - start_iter > 5 and ((iteration + 1) % 20 == 0 or iteration == max_iter - 1): for writer in writers: writer.write() periodic_checkpointer.step(iteration)