def get_flux_for_index(index, plot=True, convolve_image=True): global table "For a table with RA/DEC/WAVE/LINEWIDTH/SHOTID Info" det_info = table[index] det_obj = det_info["detectid"] coords = SkyCoord(det_info["ra"], det_info["dec"], unit="deg") wave_obj = det_info["wave"] linewidth = det_info["linewidth"] shot_det = det_info["shotid"] shotid_obj = det_info["shotid_obs"] fwhm = surveyh5.root.Survey.read_where( "shotid == shotid_obj")["fwhm_virus"][0] try: hdu = make_narrowband_image( coords=coords, shotid=shotid_obj, imsize=20 * u.arcsec, pixscale=0.25 * u.arcsec, convolve_image=convolve_image, wave_range=[ wave_obj - 2.0 * linewidth, wave_obj + 2.0 * linewidth ], subcont=True, dcont=50, include_error=True, ) except: return np.nan, np.nan, np.nan, np.nan if plot: plt.figure() plottitle = "d={} s={} s_i={}".format(det_obj, shot_det, shotid_obj) flux, flux_err, bkg_stddev, apcor = FitCircularAperture( hdu=hdu, coords=coords, plot=True, plottitle=plottitle) plt.text( 2, 2, "S/N={:3.2f}".format(flux.value / bkg_stddev.value), size=18, color="w", ) plt.savefig("im_2sigma/{}_{}.png".format(det_obj, shotid_obj)) else: flux, flux_err, bkg_stddev, apcor = FitCircularAperture(hdu=hdu, coords=coords, plot=False) return flux.value, flux_err.value, bkg_stddev.value, apcor
def fit_ellipse_for_source( friendid=None, detectid=None, coords=None, shotid=None, subcont=True, convolve_image=False, pixscale=pixscale, imsize=imsize, wave_range=None, ): if detectid is not None: global deth5 detectid_obj = detectid if detectid_obj <= 2190000000: det_info = deth5.root.Detections.read_where("detectid == detectid_obj")[0] linewidth = det_info["linewidth"] wave_obj = det_info["wave"] redshift = wave_obj / (1216) - 1 else: det_info = conth5.root.Detections.read_where("detectid == detectid_obj")[0] redshift = 0 wave_obj = 4500 coords_obj = SkyCoord(det_info["ra"], det_info["dec"], unit="deg") shotid_obj = det_info["shotid"] fwhm = surveyh5.root.Survey.read_where("shotid == shotid_obj")["fwhm_virus"][0] amp = det_info["multiframe"] if wave_range is not None: wave_range_obj = wave_range else: if detectid_obj <= 2190000000: wave_range_obj = [wave_obj - 2 * linewidth, wave_obj + 2 * linewidth] else: wave_range_obj = [4100, 4200] if coords is not None: coords_obj = coords if shotid is not None: shotid_obj = shotid fwhm = surveyh5.root.Survey.read_where("shotid == shotid_obj")[ "fwhm_virus" ][0] try: hdu = make_narrowband_image( coords=coords_obj, shotid=shotid_obj, wave_range=wave_range_obj, imsize=imsize * u.arcsec, pixscale=pixscale * u.arcsec, subcont=subcont, convolve_image=convolve_image, include_error=True, ) except: print("Could not make narrowband image for {}".format(detectid)) return np.nan, np.nan elif friendid is not None: global friend_cat sel = friend_cat["friendid"] == friendid group = friend_cat[sel] coords_obj = SkyCoord(ra=group["icx"][0] * u.deg, dec=group["icy"][0] * u.deg) wave_obj = group["icz"][0] redshift = wave_obj / (1216) - 1 linewidth = group["linewidth"][0] shotid_obj = group["shotid"][0] fwhm = group["fwhm"][0] amp = group["multiframe"][0] if wave_range is not None: wave_range_obj = wave_range else: wave_range_obj = [wave_obj - 2 * linewidth, wave_obj + 2 * linewidth] if shotid is not None: shotid_obj = shotid fwhm = surveyh5.root.Survey.read_where("shotid == shotid_obj")[ "fwhm_virus" ][0] try: hdu = make_narrowband_image( coords=coords_obj, shotid=shotid_obj, wave_range=wave_range_obj, imsize=imsize * u.arcsec, pixscale=pixscale * u.arcsec, subcont=subcont, convolve_image=convolve_image, include_error=True, ) except: print("Could not make narrowband image for {}".format(friendid)) return None elif coords is not None: coords_obj = coords if wave_range is not None: wave_range_obj = wave_range else: print( "You need to supply wave_range=[wave_start, wave_end] for collapsed image" ) if shotid is not None: shotid_obj = shotid fwhm = surveyh5.root.Survey.read_where("shotid == shotid_obj")[ "fwhm_virus" ][0] else: print("Enter the shotid to use (eg. 20200123003)") hdu = make_narrowband_image( coords=coords_obj, shotid=shotid_obj, wave_range=wave_range_obj, imsize=imsize * u.arcsec, pixscale=pixscale * u.arcsec, subcont=subcont, convolve_image=convolve_image, include_error=True, ) else: print("You must provide a detectid, friendid or coords/wave_range/shotid") return np.nan, np.nan w = wcs.WCS(hdu[0].header) if friendid is not None: sel_friend_group = friend_cat["friendid"] == friendid group = friend_cat[sel_friend_group] eps = 1 - group["a2"][0] / group["b2"][0] pa = group["pa"][0] * np.pi / 180.0 - 90 sma = group["a"][0] * 3600 / pixscale coords = SkyCoord(ra=group["icx"][0] * u.deg, dec=group["icy"][0] * u.deg) wave_obj = group["icz"][0] redshift = wave_obj / (1216) - 1 linewidth = np.nanmedian(group["linewidth"]) shotid_obj = group["shotid"][0] fwhm = group["fwhm"][0] geometry = EllipseGeometry( x0=w.wcs.crpix[0], y0=w.wcs.crpix[0], sma=sma, eps=eps, pa=pa ) else: geometry = EllipseGeometry( x0=w.wcs.crpix[0], y0=w.wcs.crpix[0], sma=20, eps=0.2, pa=20.0 ) geometry = EllipseGeometry( x0=w.wcs.crpix[0], y0=w.wcs.crpix[0], sma=20, eps=0.2, pa=20.0 ) # geometry.find_center(hdu.data) # aper = EllipticalAperture((geometry.x0, geometry.y0), geometry.sma, # geometry.sma*(1 - geometry.eps), geometry.pa) # plt.imshow(hdu.data, origin='lower') # aper.plot(color='white') ellipse = Ellipse(hdu[0].data) isolist = ellipse.fit_image() iso_tab = isolist.to_table() if len(iso_tab) == 0: geometry.find_center(hdu[0].data, verbose=False, threshold=0.5) ellipse = Ellipse(hdu[0].data, geometry) isolist = ellipse.fit_image() iso_tab = isolist.to_table() if len(iso_tab) == 0: return np.nan, np.nan, np.nan try: # compute iso's manually in steps of 3 pixels ellipse = Ellipse(hdu[0].data) # reset ellipse iso_list = [] for sma in np.arange(1, 60, 2): iso = ellipse.fit_isophote(sma) if np.isnan(iso.intens): # print('break at {}'.format(sma)) break else: iso_list.append(iso) isolist = IsophoteList(iso_list) iso_tab = isolist.to_table() except: return np.nan, np.nan, np.nan try: model_image = build_ellipse_model(hdu[0].data.shape, isolist) residual = hdu[0].data - model_image except: return np.nan, np.nan, np.nan sma = iso_tab["sma"] * pixscale const_arcsec_to_kpc = cosmo.kpc_proper_per_arcmin(redshift).value / 60.0 def arcsec_to_kpc(sma): dist = const_arcsec_to_kpc * sma return dist def kpc_to_arcsec(dist): sma = dist / const_arcsec_to_kpc return sma dist_kpc = ( sma * u.arcsec.to(u.arcmin) * u.arcmin * cosmo.kpc_proper_per_arcmin(redshift) ) dist_arcsec = kpc_to_arcsec(dist_kpc) # print(shotid_obj, fwhm) # s_exp1d = models.Exponential1D(amplitude=0.2, tau=-50) alpha = 3.5 s_moffat = models.Moffat1D( amplitude=1, gamma=(0.5 * fwhm) / np.sqrt(2 ** (1.0 / alpha) - 1.0), x_0=0.0, alpha=alpha, fixed={"amplitude": False, "x_0": True, "gamma": True, "alpha": True}, ) s_init = models.Exponential1D(amplitude=0.2, tau=-50) fit = fitting.LevMarLSQFitter() s_r = fit(s_init, dist_kpc, iso_tab["intens"]) # Fitting can be done using the uncertainties as weights. # To get the standard weighting of 1/unc^2 for the case of # Gaussian errors, the weights to pass to the fitting are 1/unc. # fitted_line = fit(line_init, x, y, weights=1.0/yunc) # s_r = fit(s_init, dist_kpc, iso_tab['intens'])#, weights=iso_tab['intens']/iso_tab['intens_err'] ) print(s_r) try: r_n = -1.0 * s_r.tau # _0 #* const_arcsec_to_kpc except: r_n = np.nan # r_n = -1. * s_r.tau_0 try: sel_iso = np.where(dist_kpc >= 2 * r_n)[0][0] except: sel_iso = -1 aper = EllipticalAperture( (isolist.x0[sel_iso], isolist.y0[sel_iso]), isolist.sma[sel_iso], isolist.sma[sel_iso] * (1 - isolist.eps[sel_iso]), isolist.pa[sel_iso], ) phottable = aperture_photometry(hdu[0].data, aper, error=hdu[1].data) flux = phottable["aperture_sum"][0] * 10 ** -17 * u.erg / (u.cm ** 2 * u.s) flux_err = phottable["aperture_sum_err"][0] * 10 ** -17 * u.erg / (u.cm ** 2 * u.s) lum_dist = cosmo.luminosity_distance(redshift).to(u.cm) lum = flux * 4.0 * np.pi * lum_dist ** 2 lum_err = flux_err * 4.0 * np.pi * lum_dist ** 2 if detectid: name = detectid elif friendid: name = friendid # Get Image data from Elixer catlib = catalogs.CatalogLibrary() try: cutout = catlib.get_cutouts( position=coords_obj, side=imsize, aperture=None, dynamic=False, filter=["r", "g", "f606W"], first=True, allow_bad_image=False, allow_web=True, )[0] except: print("Could not get imaging for " + str(name)) zscale = ZScaleInterval(contrast=0.5, krej=1.5) vmin, vmax = zscale.get_limits(values=hdu[0].data) fig = plt.figure(figsize=(20, 12)) fig.suptitle( "{} ra={:3.2f}, dec={:3.2f}, wave={:5.2f}, z={:3.2f}, mf={}".format( name, coords_obj.ra.value, coords_obj.dec.value, wave_obj, redshift, amp ), fontsize=22, ) ax1 = fig.add_subplot(231, projection=w) plt.imshow(hdu[0].data, vmin=vmin, vmax=vmax) plt.xlabel("RA") plt.ylabel("Dec") plt.colorbar() plt.title("Image summed across 4*linewidth") ax2 = fig.add_subplot(232, projection=w) plt.imshow(model_image, vmin=vmin, vmax=vmax) plt.xlabel("RA") plt.ylabel("Dec") plt.colorbar() plt.title("model") ax3 = fig.add_subplot(233, projection=w) plt.imshow(residual, vmin=vmin, vmax=vmax) plt.xlabel("RA") plt.ylabel("Dec") plt.colorbar() plt.title("residuals (image-model)") # fig = plt.figure(figsize=(10,5)) im_zscale = ZScaleInterval(contrast=0.5, krej=2.5) im_vmin, im_vmax = im_zscale.get_limits(values=cutout["cutout"].data) ax4 = fig.add_subplot(234, projection=cutout["cutout"].wcs) plt.imshow( cutout["cutout"].data, vmin=im_vmin, vmax=im_vmax, origin="lower", cmap=plt.get_cmap("gray"), interpolation="none", ) plt.text( 0.8, 0.9, cutout["instrument"] + cutout["filter"], transform=ax4.transAxes, fontsize=20, color="w", ) plt.contour(hdu[0].data, transform=ax4.get_transform(w)) plt.xlabel("RA") plt.ylabel("Dec") aper.plot( color="white", linestyle="dashed", linewidth=2, transform=ax4.get_transform(w) ) ax5 = fig.add_subplot(235) plt.errorbar( dist_kpc.value, iso_tab["intens"], yerr=iso_tab["intens_err"] * iso_tab["intens"], linestyle="none", marker="o", label="Lya SB profile", ) plt.plot(dist_kpc, s_r(dist_kpc), color="r", label="Lya exp SB model", linewidth=2) plt.xlabel("Semi-major axis (kpc)") # plt.xlabel('Semi-major axis (arcsec)') plt.ylabel("Flux ({})".format(10 ** -17 * (u.erg / (u.s * u.cm ** 2)))) plt.text(0.4, 0.7, "r_n={:3.2f}".format(r_n), transform=ax5.transAxes, fontsize=16) plt.text( 0.4, 0.6, "L_lya={:3.2e}".format(lum), transform=ax5.transAxes, fontsize=16 ) secax = ax5.secondary_xaxis("top", functions=(kpc_to_arcsec, kpc_to_arcsec)) secax.set_xlabel("Semi-major axis (arcsec)") # secax.set_xlabel('Semi-major axis (kpc)') plt.xlim(0, 100) # plt.plot(sma, s_r(sma), label='moffat psf') # plt.plot(dist_kpc.value, s1(kpc_to_arcsec(dist_kpc.value)), # linestyle='dashed', linewidth=2, # color='green', label='PSF seeing:{:3.2f}'.format(fwhm)) # These two are the exact same # s1 = models.Moffat1D() # s1.amplitude = iso_tab['intens'][0] # alpha=3.5 # s1.gamma = 0.5*(fwhm*const_arcsec_to_kpc)/ np.sqrt(2 ** (1.0 / alpha) - 1.0) # s1.alpha = alpha # plt.plot(r_1d, moffat_1d, color='orange') # plt.plot(dist_kpc.value, (s1(dist_kpc.value)), # linestyle='dashed', linewidth=2, # color='blue', label='PSF seeing:{:3.2f}'.format(fwhm)) E = Extract() E.load_shot(shotid_obj) moffat_psf = E.moffat_psf(seeing=fwhm, boxsize=imsize, scale=pixscale) moffat_shape = np.shape(moffat_psf) xcen = int(moffat_shape[1] / 2) ycen = int(moffat_shape[2] / 2) moffat_1d = ( moffat_psf[0, xcen:-1, ycen] / moffat_psf[0, xcen, ycen] * iso_tab["intens"][0] ) r_1d = moffat_psf[1, xcen:-1, ycen] E.close() plt.plot( arcsec_to_kpc(pixscale * np.arange(80)), iso_tab["intens"][0] * (moffat_psf[0, 80:-1, 80] / moffat_psf[0, 80, 80]), linestyle="dashed", color="green", label="PSF seeing:{:3.2f}".format(fwhm), ) plt.legend() if friendid is not None: ax6 = fig.add_subplot(236, projection=cutout["cutout"].wcs) plot_friends(friendid, friend_cat, cutout, ax=ax6, label=False) plt.savefig("fit2d_{}.png".format(name)) # filename = 'param_{}.txt'.format(name) # np.savetxt(filename, (r_n.value, lum.value)) return r_n, lum, lum_err
def get_line_image( friendid=None, detectid=None, coords=None, shotid=None, subcont=True, convolve_image=False, pixscale=pixscale, imsize=imsize, wave_range=None, return_coords=False, ): if detectid is not None: global deth5 detectid_obj = detectid if detectid_obj <= 2190000000: det_info = deth5.root.Detections.read_where("detectid == detectid_obj")[0] linewidth = det_info["linewidth"] wave_obj = det_info["wave"] redshift = wave_obj / (1216) - 1 else: det_info = conth5.root.Detections.read_where("detectid == detectid_obj")[0] redshift = 0 wave_obj = 4500 coords_obj = SkyCoord(det_info["ra"], det_info["dec"], unit="deg") shotid_obj = det_info["shotid"] fwhm = surveyh5.root.Survey.read_where("shotid == shotid_obj")["fwhm_virus"][0] amp = det_info["multiframe"] if wave_range is not None: wave_range_obj = wave_range else: if detectid_obj <= 2190000000: wave_range_obj = [wave_obj - 2 * linewidth, wave_obj + 2 * linewidth] else: wave_range_obj = [4100, 4200] if coords is not None: coords_obj = coords if shotid is not None: shotid_obj = shotid fwhm = surveyh5.root.Survey.read_where("shotid == shotid_obj")[ "fwhm_virus" ][0] try: hdu = make_narrowband_image( coords=coords_obj, shotid=shotid_obj, wave_range=wave_range_obj, imsize=imsize * u.arcsec, pixscale=pixscale * u.arcsec, subcont=subcont, convolve_image=convolve_image, include_error=True, ) except Exception: print("Could not make narrowband image for {}".format(detectid)) return None elif friendid is not None: global friend_cat sel = friend_cat["friendid"] == friendid group = friend_cat[sel] coords_obj = SkyCoord(ra=group["icx"][0] * u.deg, dec=group["icy"][0] * u.deg) wave_obj = group["icz"][0] redshift = wave_obj / (1216) - 1 linewidth = group["linewidth"][0] shotid_obj = group["shotid"][0] fwhm = group["fwhm"][0] amp = group["multiframe"][0] if wave_range is not None: wave_range_obj = wave_range else: wave_range_obj = [wave_obj - 2 * linewidth, wave_obj + 2 * linewidth] if shotid is not None: shotid_obj = shotid fwhm = surveyh5.root.Survey.read_where("shotid == shotid_obj")[ "fwhm_virus" ][0] try: hdu = make_narrowband_image( coords=coords_obj, shotid=shotid_obj, wave_range=wave_range_obj, imsize=imsize * u.arcsec, pixscale=pixscale * u.arcsec, subcont=subcont, convolve_image=convolve_image, include_error=True, ) except: print("Could not make narrowband image for {}".format(friendid)) return None elif coords is not None: coords_obj = coords if wave_range is not None: wave_range_obj = wave_range else: print( "You need to supply wave_range=[wave_start, wave_end] for collapsed image" ) if shotid is not None: shotid_obj = shotid fwhm = surveyh5.root.Survey.read_where("shotid == shotid_obj")[ "fwhm_virus" ][0] else: print("Enter the shotid to use (eg. 20200123003)") hdu = make_narrowband_image( coords=coords_obj, shotid=shotid_obj, wave_range=wave_range_obj, imsize=imsize * u.arcsec, pixscale=pixscale * u.arcsec, subcont=subcont, convolve_image=convolve_image, include_error=True, ) else: print("You must provide a detectid, friendid or coords/wave_range/shotid") return None if return_coords: return hdu, coords_obj else: return hdu
def get_flux_for_source( detectid, coords=None, radius=1 * u.arcsec, annulus=[5, 7] * u.arcsec, shotid=None, wave=None, linewidth=None, plot=False, convolve_image=False, ): global deth5, conth5 if detectid is not None: detectid_obj = detectid if detectid_obj <= 2190000000: det_info = deth5.root.Detections.read_where('detectid == detectid_obj')[0] linewidth = det_info['linewidth'] wave_obj = det_info['wave'] redshift = wave_obj/(1216) - 1 else: det_info = conth5.root.Detections.read_where('detectid == detectid_obj')[0] redshift = 0 wave_obj = 4500 coords_obj = SkyCoord(det_info['ra'], det_info['dec'], unit='deg') shotid_obj = det_info['shotid'] if coords is not None: coords_obj = coords if shotid is not None: shotid_obj = shotid #fwhm = surveyh5.root.Survey.read_where("shotid == shotid_obj")["fwhm_virus"][0] if wave is not None: wave_obj = wave if linewidth is not None: linewidth_obj = linewidth try: hdu = make_narrowband_image( coords=coords_obj, shotid=shotid_obj, imsize=20 * u.arcsec, pixscale=0.25 * u.arcsec, convolve_image=convolve_image, dcont=50, wave_range=[wave_obj - 2.0 * linewidth_obj, wave_obj + 2.0 * linewidth_obj], subcont=True, include_error=True, ) except: print('Could not make narrowband image for {}'.format(detectid_obj)) return np.nan, np.nan, np.nan, np.nan if plot: plottitle = "{} {}".format(detectid_obj, shotid_obj) flux, flux_err, bkg_stddev, apcor = FitCircularAperture( hdu=hdu, coords=coords_obj, plot=True, plottitle=plottitle, radius=radius, annulus=annulus ) plt.text( 2, 2, "S/N={:3.2f}".format(flux.value / bkg_stddev.value), size=18, color="w", ) else: flux, flux_err, bkg_stddev, apcor = FitCircularAperture( hdu=hdu, coords=coords_obj, radius=radius, annulus=annulus, plot=False ) return flux.value, flux_err.value, bkg_stddev.value, apcor