def plot_results(): data = load_data("val", independent=False) data = make_hierarchical_data(data, lateral=False, latent=True) logger = SaveLogger("test_latent_2.0001.pickle", save_every=100) ssvm = logger.load() plot_results_hierarchy(data, ssvm.predict(data.X), folder="latent_results_val_50_states_no_lateral")
def plot_init(): data = load_data("train", independent=False) data = make_hierarchical_data(data, lateral=False, latent=True) #X, Y = discard_void(data.X, data.Y, 21) #data.X, data.Y = X, Y H = kmeans_init(data.X, data.Y, n_labels=22, n_hidden_states=22) plot_results_hierarchy(data, H)