コード例 #1
0
def main():
    # Definicao do problema
    p = ProblemaRaiz()

    hc = HillClimbing(max_alt=1000, max_sem_alt=10)
    hc.executa(p)

    tb = TabuSearch(max_alt=1000, max_sem_alt=10)
    tb.executa(p)

    tbg = TabuSearchGrasp(max_alt=1000, max_sem_alt=10)
    tbg.executa(p)
コード例 #2
0
def main():
    target_string = "Hello World!"
    population_size = 1400
    runs = 10
    """
    The main method for the application. The Genetic Algorithm uses tournament
    selection as selection method and k-point or one-point crossover as
    crossover methods. The Genetic Algorithm constructor takes in the following parameters:
    @param: target_string The target string
    @param: population_size Amount of randomly generated strings
    @param: crossover_rate Crossover Rate in percentage (i.e. 1 = 100%)
    @param: mutation_rate Mutation Rate in percentage
    @param: is_k_point_crossover Choose whether to choose k-point crossover as
            crossover method. If false, one-point crossover is performed
    @param: tournament_size_percent Percentage of population to participate in
            tournaments for selection
    @param: strongest_winner_probability Probability of strongest participant
            in tournament to win, as well as the second strongest's probability
    """
    ga = GeneticAlgorithm(target_string, population_size, 0.8, 0.05, True,
                          0.05, 0.65)
    ga.set_show_each_chromosome(False)
    ga.set_show_crossover_internals(False)
    ga.set_show_mutation_internals(False)
    ga.set_silent(
        False)  # If False it shows the fittest chromosome of each generation
    ga.run(runs)
    ga.get_stats()
    """
    The Hill Climbing constructor takes in the following parameters:
    @param: target_string The target string
    @param: solutions_size Amount of solutions (strings) to search for a
            better solution in
    """
    hc = HillClimbing(target_string, population_size)
    hc.set_show_each_solution(False)
    hc.set_silent(True)
    hc.run(runs)
    hc.get_stats()
    """
    The Random Search constructor takes in the following parameters:
    @param: target_string The target string
    @param: solutions_size Amount of solutions (strings) generated randomly
            each round in which the solution is searched for
    """
    rs = RandomSearch(target_string, population_size)
    rs.set_show_each_solution(False)
    rs.set_silent(True)
    rs.run(runs)
    rs.get_stats()
コード例 #3
0
def basic_stats(queens, epochs=1):
    """ Wrapper for HillClimbing.basic to calculate stats based on a 
        given number of epochs.

        Args:
            queens (Queens): Queens object used in hill climbing algorithm.

            epochs (int): Number of epochs to run before calculating averages.
    
    """
    successes = {'count': np.finfo(float).eps, 'steps' : 0}
    failures = {'count': np.finfo(float).eps, 'steps' : 0} 

    for e in range(epochs):
        print("{:=^50d}".format(e+1))
        # New random board
        queens.populate_board(seed=None)

        successful, steps = HillClimbing.basic(queens)

        if successful:
            successes['count'] += 1
            successes['steps'] += steps
        else:
            failures['count'] += 1
            failures['steps'] += steps

    print("{:=^50s}".format("Stats"))
    print("Success Stats")
    print("-Rate: {:.2f}".format(successes['count'] / epochs))
    print("-Steps: {:.2f}".format(successes['steps'] / successes['count']))
    print("Failure Stats")
    print("-Rate: {:.2f}".format(failures['count'] / epochs))
    print("-Steps: {:.2f}".format(failures['steps'] / failures['count']))
コード例 #4
0
ファイル: main.py プロジェクト: sanjaybv/gym
def main():
    # initialize the enironment
    env = gym.make('Acrobot-v0')
    env.monitor.start('acrobot', force=True, seed=0)

    # initialize agent
    agent = HillClimbing(env.action_space, env.observation_space)

    # set up run parameters
    episode_count = 200
    max_steps = env.spec.timestep_limit
    reward = 0
    done = False

    # run the episodes
    for i_episode in range(episode_count):
        print i_episode,
        agent.start_episode()
        ob = env.reset()
        for t in range(max_steps):
            #env.render()
            # get action from the agent
            action = agent.act(ob, reward, done)
            ob, reward, done, _ = env.step(action)
            if done:
                break
        agent.end_episode()
コード例 #5
0
    def executar(self):

        self.listaDadosIniciais = Configuracao.gerarDadosIniciais(
            self.configuracao)

        resultado = Resultado(self.configuracao.problema)

        for a in range(4):

            algoritmo = None

            if (a == 0):
                algoritmo = Algoritmo(Configuracao.algoritmos[a],
                                      HillClimbing(self.configuracao))
            elif (a == 1):
                algoritmo = Algoritmo(Configuracao.algoritmos[a],
                                      HillClimbingRestart(self.configuracao))
            elif (a == 2):
                algoritmo = Algoritmo(Configuracao.algoritmos[a],
                                      SimulatedAnnealing(self.configuracao))
            else:
                algoritmo = Algoritmo(Configuracao.algoritmos[a],
                                      GeneticAlgorithm(self.configuracao))

            for iteracao in range(10):
                algoritmo.executar(self.listaDadosIniciais[iteracao], iteracao)

            algoritmo.gerarEstatisticas()

            Graficos.gerarGraficoFuncaoObjetivo(algoritmo, self.configuracao)

            resultado.adicionar(algoritmo)

        inicioComparativo = time.perf_counter()

        self.finalizar(resultado)

        terminoComparativo = time.perf_counter()

        print(
            f"Geração da tabela/gráfico de comparativo de performance em {terminoComparativo - inicioComparativo:0.4f} segundos"
        )
コード例 #6
0
def random_restarts_stats(queens, threshold=100, epochs=1):
    """ Wrapper for HillClimbing.random_restarts to calculate stats based on a 
        given number of epochs.

        Args:
            queens (Queens): Queens object used in hill climbing algorithm.

            threshold (int): Threshold number sideways moves allowed.

            epochs (int): Number of epochs to run before calculating averages.
    
    """
    successes = {'count': np.finfo(float).eps, 'steps' : 0, 'restarts': 0}
    failures = {'count': np.finfo(float).eps, 'steps' : 0, 'restarts': 0} 

    for e in range(epochs):
        print("{:=^50d}".format(e+1))
        # New random board
        queens.populate_board(seed=None)

        successful, steps, restarts = HillClimbing.random_restarts(
            queens=queens, threshold=threshold)

        if successful:
            successes['count'] += 1
            successes['steps'] += steps
            successes['restarts'] += restarts
        else:
            failures['count'] += 1
            failures['steps'] += steps
            failures['restarts'] += restarts

    print("{:=^50s}".format("Stats"))
    print("Success Stats")
    print("-Rate: {:.2f}".format(successes['count'] / epochs))
    print("-Steps: {:.2f}".format(successes['steps'] / successes['count']))
    print("-Restarts: {:.2f}".format(successes['restarts'] / successes['count']))
    print("Failure Stats")
    print("-Rate: {:.2f}".format(failures['count'] / epochs))
    print("-Steps: {:.2f}".format(failures['steps'] / failures['count']))
    print("-Restarts: {:.2f}".format(failures['restarts'] / failures['count']))
コード例 #7
0
def run():
    label_find_the_result.config(text="Result:")
    label_time.config(text="Time:")
    label_steps.config(text="Steps:")
    btn_run.config(state=tk.DISABLED)
    btn_reset.config(state=tk.DISABLED)
    radio_dfs.config(state=tk.DISABLED)
    radio_bfs.config(state=tk.DISABLED)
    radio_bestfs.config(state=tk.DISABLED)
    radio_hc.config(state=tk.DISABLED)

    algorithm = alg.get()
    res = ""
    steps = 0
    time_start = time.time()
    if algorithm == 1:
        res = DFS.solve(puzzle_in, window)
        print("DFS: ", res)
    elif algorithm == 2:
        res = BFS.solve(puzzle_in, window)
        print("BFS: ", res)
    elif algorithm == 3:
        res = BestFirstSearch.solve(puzzle_in, window)
        print("Best First Search: ", res)
    elif algorithm == 4:
        res = HillClimbing.solve(puzzle_in, window)
        print("Hill Climbing: ", res)
    time_end = time.time()
    if res is None:
        solution = "No!"
    else:
        solution = "Yes!"
        steps = len(res)
    output(solution, time_end - time_start, steps)
    btn_run.config(state=tk.NORMAL)
    btn_reset.config(state=tk.NORMAL)
    radio_dfs.config(state=tk.NORMAL)
    radio_bfs.config(state=tk.NORMAL)
    radio_bestfs.config(state=tk.NORMAL)
    radio_hc.config(state=tk.NORMAL)
コード例 #8
0
def main():
    runs = 10
    rounds = 5
    chromosome_size = 23
    population_size = 1000
    data_set_name = 'bigfaultmatrix.txt'

    pwd = os.path.abspath(os.path.dirname(__file__))
    data_set_path = os.path.join(pwd, data_set_name)
    parser = CSVParser(data_set_path)
    test_case_fault_matrix = parser.parse_data(True)

    ga = GeneticAlgorithm(test_case_fault_matrix, chromosome_size,
                          population_size, rounds, 0.8, 0.08, 0.05, 0.75)
    ga.set_show_each_chromosome(False)
    ga.set_show_fitness_internals(False)
    ga.set_show_crossover_internals(False)
    ga.set_show_mutation_internals(False)
    ga.set_show_duplicate_internals(False)
    ga.set_silent(True)
    ga.run(runs)
    ga_fitness = ga.get_stats()

    for i in range(0, 2):
        if i == 0:
            hc = HillClimbing(test_case_fault_matrix, chromosome_size,
                              population_size, rounds, False)
        else:
            hc = HillClimbing(test_case_fault_matrix, chromosome_size,
                              population_size, rounds, True)
        hc.set_show_each_solution(False)
        hc.set_show_fitness_internals(False)
        hc.set_show_swapping_internals(False)
        hc.set_silent(True)
        hc.run(runs)
        if i == 0:
            hc_internal_fitness = hc.get_stats()
        else:
            hc_external_fitness = hc.get_stats()

    rs = RandomSearch(test_case_fault_matrix, chromosome_size, population_size,
                      rounds)
    rs.set_show_each_solution(False)
    rs.set_silent(True)
    rs.run(runs)
    rs_fitness = rs.get_stats()

    rs_data = np.array(rs_fitness)
    hs_internal = np.array(hc_internal_fitness)
    hs_external = np.array(hc_external_fitness)
    ga_data = np.array(ga_fitness)

    # test_cases_per_test_suite = np.array([5, 10, 20, 23, 30, 50, 100])
    # unique_large_apfd = np.array([0.4594736842105263, 0.6063157894736844, 0.6867105263157895, 0.6978260869565216, 0.7128947368421051, 0.7326842105263159, 0.7480263157894737])
    # full_large_apfd = np.array([0.44631578947368417, 0.6023684210526316, 0.6846052631578947, 0.6958810068649884, 0.7122807017543858, 0.7320526315789474, 0.7476578947368421])

    # plt.plot(test_cases_per_test_suite, unique_large_apfd, '-gD')
    # plt.xlabel("Test Cases per Test Suite")
    # plt.ylabel("Mean Fitness (APFD)")
    # plt.xticks(np.arange(min(test_cases_per_test_suite), max(test_cases_per_test_suite) + 1, 5.0))

    # combine these different collections into a list
    data_to_plot = [rs_data, hs_internal, hs_external, ga_data]

    # Create a figure instance
    fig = plt.figure(1, figsize=(9, 6))

    # Create an axes instance
    ax = fig.add_subplot(111)

    # add patch_artist=True option to ax.boxplot()
    bp = ax.boxplot(data_to_plot, patch_artist=True)

    # change outline color, fill color and linewidth of the boxes
    for box in bp['boxes']:
        # change outline color
        box.set(color='#7570b3', linewidth=2)
        # change fill color
        box.set(facecolor='#1b9e77')

    # change color and linewidth of the whiskers
    for whisker in bp['whiskers']:
        whisker.set(color='#7570b3', linewidth=2)

    # change color and linewidth of the caps
    for cap in bp['caps']:
        cap.set(color='#7570b3', linewidth=2)

    # change color and linewidth of the medians
    for median in bp['medians']:
        median.set(color='#b2df8a', linewidth=2)

    # change the style of fliers and their fill
    for flier in bp['fliers']:
        flier.set(marker='o', color='#e7298a', alpha=0.5)

    # Custom x-axis labels
    ax.set_xticklabels([
        'Random Search', 'HC Internal Swap', 'HC External Swap',
        'Genetic Algorithm'
    ])

    # Remove top axes and right axes ticks
    ax.get_xaxis().tick_bottom()
    ax.get_yaxis().tick_left()

    # Save the figure
    graph_path = os.path.join(pwd, 'graph.pdf')
    pdf = PdfPages(graph_path)
    plt.savefig(pdf, format='pdf', bbox_inches='tight')
    plt.show()
    pdf.close()
コード例 #9
0
    i, j = 6, 6
    board[i, j] = 1
    i, j = 5, 7
    board[i, j] = 1
    board.print()


try:
    n = 8
    board = Board(n)

    #_board_setup(board)
    exp_num = _get_experiment_number()
    board.rand_init()

    hill_climbing = HillClimbing(board)

    path = 'figures/'
    path += str(exp_num)
    path += '-experiment'
    path += '.txt'

    _save_board_setup(path, hill_climbing)

    line_plot = []

    for h in hill_climbing.execute():
        line_plot.append(h)
except KeyboardInterrupt:
    print("W: interrupt received, stopping…")
finally:
コード例 #10
0
ファイル: main.py プロジェクト: sux2mfgj/knapsack
from iterative_local_search import IterativeLocalSearch
# from gls import GuidedLocalSearch

if __name__ == '__main__':

    # parameters for simulation
    values = [120, 130, 80, 100, 250, 185]
    costs = [10, 12, 7, 9, 21, 16]
    number_of_items = [0 for i in range(0, len(values))]
    capasity = 65
    neighbor_distance = 2

    # prepare solver dictionary
    sa = SimulatedAnealing(capasity, values, costs, number_of_items,
                           neighbor_distance, 10000, 0.99)
    hc = HillClimbing(capasity, values, costs, number_of_items,
                      neighbor_distance)
    # ta = TabuSearch(...)
    ils = IterativeLocalSearch(capasity, values, costs, number_of_items,
                               neighbor_distance)
    # gls = GuidedLocalSearch(...)
    implemented_algorithms = {
        'sa': sa,
        'hc': hc,
        # 'ta': ta
        'ils': ils,
        # 'gls': gls
    }

    parser = argparse.ArgumentParser()
    parser.add_argument('-d',
                        '--debug',
コード例 #11
0
    if len(argv) < 9:
        print(
            "Wrong number of parameters: size seed -- HillClimbing numberIterations distance {empty/random} {ILS/RLS} {number_perturbation_for_ILS}"
        )
        exit()
    # Parsing input
    datatype = [int, int, str, str, int, int, str, str]
    size, seed, _, _, num_iterations, distance, empty, option = map(
        lambda x: x[0](x[1]), zip(datatype, argv[1:]))
    perturbations = 1
    if option == "ILS":
        if len(argv) > 9:
            perturbations = int(argv[9])

    #Initialising object
    hc = HillClimbing(size, seed, num_iterations, distance, perturbations,
                      empty == "empty")

    startTime = time()
    sol, total_number_individuals = None, 0
    if option == "ILS":
        sol, total_number_individuals = hc.ILS()
    elif option == "RLS":
        sol, total_number_individuals = hc.RLS()
    else:
        print("Unknow Algorithm")
        exit()
    elapsed_time = time() - startTime

    #Printing output
    print("\n------------ SOLUTION ------------\n")
    printMaze(getProblemInstance(size, sol[0]))
コード例 #12
0
# Create a portfolio for each of the three investment strategies: hill climbing,
# simulated annealing, and user choice, with an initial investment of $10,000
# in each of the ten companies.
user_portfolio = Portfolio()
hc_portfolio = Portfolio()
sa_portfolio = Portfolio()
initial_investment = 10000

for i in user_list:
    new_node = Node(i, dow_jones.get(i), initial_investment)
    hc_portfolio.add_stock(new_node)
    sa_portfolio.add_stock(new_node)
    user_portfolio.add_stock(new_node)

# display investment mix as selected by user
print("User Portfolio:")
user_portfolio.print_contents()

# display investment mix selected using hill climbing
print("\nHill Climbing Portfolio:")
hc_obj = HillClimbing(hc_portfolio)
hc_obj.hill_climbing()
hc_portfolio = hc_obj.best_portfolio
hc_portfolio.print_contents()

# display investment mix selected using simulated annealing
print("\nSimulated Annealing Portfolio:")
sa_obj = SimulatedAnnealing(sa_portfolio)
sa_obj.simulated_annealing()
sa_portfolio.print_contents()