コード例 #1
0
            for i_cent_bins in range(len(CENTRALITY_LIST)):
                cent_bins = CENTRALITY_LIST[i_cent_bins]

                bin = f'{split}_{cent_bins[0]}_{cent_bins[1]}_{ct_bins[0]}_{ct_bins[1]}'
                ##############################################################
                # TRAINING AND TEST SET PREPARATION
                ##############################################################

                # features plot
                leg_labels = ['background', 'signal']

                model_clf = xgb.XGBClassifier(use_label_encoder=False,
                                              n_jobs=10)
                model_hdl = ModelHandler(model_clf, TRAINING_COLUMNS_LIST)
                model_hdl.set_model_params(HYPERPARAMS)

                # hyperparameters optimization and model training
                if not os.path.isdir('models'):
                    os.mkdir('models')
                bin_model = bin
                if MERGE_CENTRALITY:
                    bin_model = f'all_0_90_{ct_bins[0]}_{ct_bins[1]}'

                if OPTIMIZE and TRAIN:
                    model_hdl.optimize_params_bayes(train_test_data,
                                                    HYPERPARAMS_RANGES,
                                                    'roc_auc',
                                                    nfold=5,
                                                    init_points=10,
                                                    n_iter=10,
コード例 #2
0
def train_test(inputCfg, PtBin, OutPutDirPt, TrainTestData, iBin):  #pylint: disable=too-many-statements, too-many-branches
    '''
    function for model training and testing
    '''
    n_classes = len(np.unique(TrainTestData[3]))
    modelClf = xgb.XGBClassifier(use_label_encoder=False)
    TrainCols = inputCfg['ml']['training_columns']
    HyperPars = inputCfg['ml']['hyper_par'][iBin]
    if not isinstance(TrainCols, list):
        print('\033[91mERROR: training columns must be defined!\033[0m')
        sys.exit()
    if not isinstance(HyperPars, dict):
        print(
            '\033[91mERROR: hyper-parameters must be defined or be an empty dict!\033[0m'
        )
        sys.exit()
    ModelHandl = ModelHandler(modelClf, TrainCols, HyperPars)

    # hyperparams optimization
    if inputCfg['ml']['hyper_par_opt']['do_hyp_opt']:
        print('Perform bayesian optimization')

        BayesOptConfig = inputCfg['ml']['hyper_par_opt']['bayes_opt_config']
        if not isinstance(BayesOptConfig, dict):
            print('\033[91mERROR: bayes_opt_config must be defined!\033[0m')
            sys.exit()

        if n_classes > 2:
            average_method = inputCfg['ml']['roc_auc_average']
            roc_method = inputCfg['ml']['roc_auc_approach']
            if not (average_method in ['macro', 'weighted']
                    and roc_method in ['ovo', 'ovr']):
                print(
                    '\033[91mERROR: selected ROC configuration is not valid!\033[0m'
                )
                sys.exit()

            if average_method == 'weighted':
                metric = f'roc_auc_{roc_method}_{average_method}'
            else:
                metric = f'roc_auc_{roc_method}'
        else:
            metric = 'roc_auc'

        print('Performing hyper-parameters optimisation: ...', end='\r')
        OutFileHypPars = open(
            f'{OutPutDirPt}/HyperParOpt_pT_{PtBin[0]}_{PtBin[1]}.txt', 'wt')
        sys.stdout = OutFileHypPars
        ModelHandl.optimize_params_bayes(
            TrainTestData,
            BayesOptConfig,
            metric,
            nfold=inputCfg['ml']['hyper_par_opt']['nfolds'],
            init_points=inputCfg['ml']['hyper_par_opt']['initpoints'],
            n_iter=inputCfg['ml']['hyper_par_opt']['niter'],
            njobs=inputCfg['ml']['hyper_par_opt']['njobs'])
        OutFileHypPars.close()
        sys.stdout = sys.__stdout__
        print('Performing hyper-parameters optimisation: Done!')
        print(
            f'Output saved in {OutPutDirPt}/HyperParOpt_pT_{PtBin[0]}_{PtBin[1]}.txt'
        )
        print(f'Best hyper-parameters:\n{ModelHandl.get_model_params()}')
    else:
        ModelHandl.set_model_params(HyperPars)

    # train and test the model with the updated hyper-parameters
    yPredTest = ModelHandl.train_test_model(
        TrainTestData,
        True,
        output_margin=inputCfg['ml']['raw_output'],
        average=inputCfg['ml']['roc_auc_average'],
        multi_class_opt=inputCfg['ml']['roc_auc_approach'])
    yPredTrain = ModelHandl.predict(TrainTestData[0],
                                    inputCfg['ml']['raw_output'])

    # save model handler in pickle
    ModelHandl.dump_model_handler(
        f'{OutPutDirPt}/ModelHandler_pT_{PtBin[0]}_{PtBin[1]}.pickle')
    ModelHandl.dump_original_model(
        f'{OutPutDirPt}/XGBoostModel_pT_{PtBin[0]}_{PtBin[1]}.model', True)

    #plots
    LegLabels = [
        inputCfg['output']['leg_labels']['Bkg'],
        inputCfg['output']['leg_labels']['Prompt']
    ]
    if inputCfg['output']['leg_labels']['FD'] is not None:
        LegLabels.append(inputCfg['output']['leg_labels']['FD'])
    OutputLabels = [
        inputCfg['output']['out_labels']['Bkg'],
        inputCfg['output']['out_labels']['Prompt']
    ]
    if inputCfg['output']['out_labels']['FD'] is not None:
        OutputLabels.append(inputCfg['output']['out_labels']['FD'])
    #_____________________________________________
    plt.rcParams["figure.figsize"] = (10, 7)
    MLOutputFig = plot_utils.plot_output_train_test(
        ModelHandl,
        TrainTestData,
        80,
        inputCfg['ml']['raw_output'],
        LegLabels,
        inputCfg['plots']['train_test_log'],
        density=True)
    if n_classes > 2:
        for Fig, Lab in zip(MLOutputFig, OutputLabels):
            Fig.savefig(
                f'{OutPutDirPt}/MLOutputDistr{Lab}_pT_{PtBin[0]}_{PtBin[1]}.pdf'
            )
    else:
        MLOutputFig.savefig(
            f'{OutPutDirPt}/MLOutputDistr_pT_{PtBin[0]}_{PtBin[1]}.pdf')
    #_____________________________________________
    plt.rcParams["figure.figsize"] = (10, 9)
    ROCCurveFig = plot_utils.plot_roc(TrainTestData[3], yPredTest, None,
                                      LegLabels,
                                      inputCfg['ml']['roc_auc_average'],
                                      inputCfg['ml']['roc_auc_approach'])
    ROCCurveFig.savefig(
        f'{OutPutDirPt}/ROCCurveAll_pT_{PtBin[0]}_{PtBin[1]}.pdf')
    pickle.dump(
        ROCCurveFig,
        open(f'{OutPutDirPt}/ROCCurveAll_pT_{PtBin[0]}_{PtBin[1]}.pkl', 'wb'))
    #_____________________________________________
    plt.rcParams["figure.figsize"] = (10, 9)
    ROCCurveTTFig = plot_utils.plot_roc_train_test(
        TrainTestData[3], yPredTest, TrainTestData[1], yPredTrain, None,
        LegLabels, inputCfg['ml']['roc_auc_average'],
        inputCfg['ml']['roc_auc_approach'])
    ROCCurveTTFig.savefig(
        f'{OutPutDirPt}/ROCCurveTrainTest_pT_{PtBin[0]}_{PtBin[1]}.pdf')
    #_____________________________________________
    PrecisionRecallFig = plot_utils.plot_precision_recall(
        TrainTestData[3], yPredTest, LegLabels)
    PrecisionRecallFig.savefig(
        f'{OutPutDirPt}/PrecisionRecallAll_pT_{PtBin[0]}_{PtBin[1]}.pdf')
    #_____________________________________________
    plt.rcParams["figure.figsize"] = (12, 7)
    FeaturesImportanceFig = plot_utils.plot_feature_imp(
        TrainTestData[2][TrainCols], TrainTestData[3], ModelHandl, LegLabels)
    n_plot = n_classes if n_classes > 2 else 1
    for iFig, Fig in enumerate(FeaturesImportanceFig):
        if iFig < n_plot:
            label = OutputLabels[iFig] if n_classes > 2 else ''
            Fig.savefig(
                f'{OutPutDirPt}/FeatureImportance{label}_pT_{PtBin[0]}_{PtBin[1]}.pdf'
            )
        else:
            Fig.savefig(
                f'{OutPutDirPt}/FeatureImportanceAll_pT_{PtBin[0]}_{PtBin[1]}.pdf'
            )

    return ModelHandl
コード例 #3
0
                    print(
                        '\n==================================================')
                    print('centrality:', cclass, ' ct:', ctbin, ' pT:', ptbin,
                          split)

                    part_time = time.time()

                    # data[0]=train_set, data[1]=y_train, data[2]=test_set, data[3]=y_test
                    data = ml_analysis.prepare_dataframe(COLUMNS,
                                                         cent_class=cclass,
                                                         ct_range=ctbin,
                                                         pt_range=ptbin)
                    input_model = xgb.XGBClassifier()
                    model_handler = ModelHandler(input_model)

                    model_handler.set_model_params(MODEL_PARAMS)
                    model_handler.set_model_params(HYPERPARAMS)
                    model_handler.set_training_columns(COLUMNS)

                    if OPTIMIZE:
                        model_handler.optimize_params_bayes(data,
                                                            HYPERPARAMS_RANGE,
                                                            'roc_auc',
                                                            init_points=10,
                                                            n_iter=10)

                    model_handler.train_test_model(data)
                    print("train test model")
                    print(
                        f'--- model trained and tested in {((time.time() - part_time) / 60):.2f} minutes ---\n'
                    )
コード例 #4
0
def train_xgboost_model(signal,
                        background,
                        filename_dict,
                        params,
                        params_range,
                        flag_dict,
                        training_variables='',
                        testsize=0.5):
    '''
    Trains an XGBOOST model using hipe4ml and plot output distribution and feature importance
    '''

    print('Training XGBOOST model')

    training_fig_path = filename_dict['analysis_path'] + "/images/training"

    train_test_data = train_test_generator([signal, background], [1, 0],
                                           test_size=testsize)

    if training_variables == '':
        training_variables = train_test_data[0].columns.tolist()

    model_clf = xgb.XGBClassifier()
    model_hdl = ModelHandler(model_clf, training_variables)
    if not flag_dict['use_default_param']:
        model_hdl.set_model_params(params)

    if flag_dict['benchmark_opt']:

        print('Benchamarking optimizers\n')
        import time
        from sklearn.metrics import roc_auc_score
        times_sk = []
        roc_sk = []

        for i in range(1):
            start = time.time()

            model_hdl.optimize_params_bayes(train_test_data,
                                            params_range,
                                            'roc_auc',
                                            njobs=-1)
            model_hdl.train_test_model(train_test_data, )

            y_pred_test = model_hdl.predict(
                train_test_data[2], True)  #used to evaluate model performance

            roc_sk.append(roc_auc_score(train_test_data[3], y_pred_test))

            times_sk.append(time.time() - start)

        print('\nBAYES OPTIMIZATION WITH SKLEARN')
        print('Mean time : ' + str(np.mean(times_sk)))
        print('Mean ROC : ' + str(np.mean(roc_sk)))
        print('--------------\n')
        print('OPTUNA')

        time = []
        roc = []

        for i in range(1):

            for key in params:
                if isinstance(params[key], str):
                    params_range[key] = params[key]

            model_hdl.optimize_params_optuna(train_test_data,
                                             params_range,
                                             'roc_auc',
                                             timeout=flag_dict['timeout'],
                                             n_jobs=flag_dict['n_jobs'])
            model_hdl.train_test_model(train_test_data, )

            y_pred_test = model_hdl.predict(
                train_test_data[2], True)  #used to evaluate model performance

            roc.append(roc_auc_score(train_test_data[3], y_pred_test))

        print('\nBAYES OPTIMIZATION WITH SKLEARN')
        print('Mean time : ' + str(np.mean(times_sk)))
        print('Mean ROC : ' + str(np.mean(roc_sk)))
        print('--------------\n')
        print('OPTUNA')
        print('Fixed time : ' + str(np.mean(time)))
        print('Mean ROC : ' + str(np.mean(roc)))
        print('--------------\n')

    if flag_dict['optimize_bayes']:
        import time
        print('Doing Bayes optimization of hyperparameters\n')
        start = time.time()
        model_hdl.optimize_params_bayes(train_test_data,
                                        params_range,
                                        'roc_auc',
                                        n_iter=700,
                                        njobs=flag_dict['n_jobs'])
        print('Elapsed time: ' + str(time.time() - start))

    if flag_dict['optimize_optuna']:
        print('Doing Optuna optimization of hyperparameters\n')
        for key in params:
            if isinstance(params[key], str):
                params_range[key] = params[key]
        study = model_hdl.optimize_params_optuna(train_test_data,
                                                 params_range,
                                                 scoring='roc_auc',
                                                 timeout=flag_dict['timeout'],
                                                 n_jobs=flag_dict['n_jobs'],
                                                 n_trials=None)

        print('Parameters optimization done!\n')

        if flag_dict['plot_optim']:
            print('Saving optimization plots')
            fig = optuna.visualization.plot_slice(study)
            fig.write_image(training_fig_path + '/optuna_slice.png')
            fig = optuna.visualization.plot_optimization_history(study)
            fig.write_image(training_fig_path + '/optuna_history.png')
            '''fig = optuna.visualization.plot_param_importances(study)
            fig.write_image(training_fig_path + '/optuna_param_importance.png')
            fig = optuna.visualization.plot_contour(study)
            fig.write_image(training_fig_path + '/optuna_contour.png')'''
            print('Done\n')

        import joblib

        joblib.dump(study, filename_dict['analysis_path'] + "model/study.pkl")

    model_hdl.train_test_model(train_test_data, )
    print(model_hdl.get_model_params())

    print('Predicting values on training and test datas')
    y_pred_train = model_hdl.predict(train_test_data[0], True)
    y_pred_test = model_hdl.predict(train_test_data[2],
                                    True)  #used to evaluate model performance
    print('Prediction done\n')

    plt.rcParams["figure.figsize"] = (10, 7)
    leg_labels = ['background', 'signal']

    print('Saving Output comparison plot')
    plt.figure()
    ml_out_fig = plot_utils.plot_output_train_test(model_hdl,
                                                   train_test_data,
                                                   100,
                                                   True,
                                                   leg_labels,
                                                   True,
                                                   density=False)
    plt.savefig(training_fig_path + '/output_train_test.png',
                dpi=300,
                facecolor='white')
    plt.close()
    print('Done\n')

    print('Saving ROC AUC plot')
    plt.figure()
    roc_train_test_fig = plot_utils.plot_roc_train_test(
        train_test_data[3], y_pred_test, train_test_data[1], y_pred_train,
        None, leg_labels)  #ROC AUC plot
    plt.savefig(training_fig_path + '/ROC_AUC_train_test.png',
                dpi=300,
                facecolor='white')

    import pickle
    with open(training_fig_path + '/ROC_AUC_train_test.pickle', 'wb') as f:
        pickle.dump(roc_train_test_fig, f)
    plt.close()

    print('Done\n')

    print('Saving feature importance plots')
    plt.figure()
    feat_imp_1, feat_imp_2 = plot_utils.plot_feature_imp(train_test_data[2],
                                                         train_test_data[3],
                                                         model_hdl,
                                                         approximate=True)
    feat_imp_1.savefig(training_fig_path +
                       '/feature_importance_HIPE4ML_violin.png',
                       dpi=300,
                       facecolor='white')
    feat_imp_2.savefig(training_fig_path +
                       '/feature_importance_HIPE4ML_bar.png',
                       dpi=300,
                       facecolor='white')
    plt.close()
    print('Done\n')

    efficiency_score_conversion(train_test_data, y_pred_test, filename_dict)

    return train_test_data, y_pred_test, model_hdl
コード例 #5
0
class Optimiserhipe4mltree:
    # Class Attribute
    species = "optimiser_hipe4mltree"

    def __init__(self, data_param, binmin, binmax, training_var, bkg_sel,
                 hyper_pars):

        self.logger = get_logger()

        # directory
        #self.do_mlprefilter = datap.get("doml_asprefilter", None)
        self.dirmlout = data_param["ml"]["mlout"]
        self.dirmlplot = data_param["ml"]["mlplot"]
        #if self.do_mlprefilter is True:
        #    self.dirmodel = self.dirmodel + "/prefilter"
        #    self.dirmlplot = self.dirmlplot + "/prefilter"
        #if self.do_mlprefilter is False:
        #    self.dirmodel = self.dirmodel + "/analysis"
        #    self.dirmlplot = self.dirmlplot + "/analysis"

        self.inputtreedata = "/Users/lvermunt/cernbox/Analyses/ML/input/hipe4mlTTree/data.root"
        self.inputtreemc = "/Users/lvermunt/cernbox/Analyses/ML/input/hipe4mlTTree/prompt.root"
        self.v_train = None
        self.p_binmin = binmin
        self.p_binmax = binmax

        self.s_selsigml = ""
        self.s_selbkgml = bkg_sel  #"inv_mass < 1.82 or 1.92 < inv_mass < 2.00"
        self.v_bkgoversigfrac = 3
        self.v_sig = 1
        self.v_bkg = 0
        self.rnd_splt = data_param["ml"]["rnd_splt"]
        self.test_frac = data_param["ml"]["test_frac"]

        self.prompthandler = None
        self.datahandler = None
        self.bkghandler = None
        self.traintestdata = None
        self.ypredtrain_hipe4ml = None
        self.ypredtest_hipe4ml = None

        self.preparesample()

        self.p_hipe4ml_model = None
        self.v_hipe4ml_pars = hyper_pars
        self.load_hipe4mlmodel()

        self.bayesoptconfig_hipe4ml = data_param["hipe4ml"]["hyper_par_opt"][
            "bayes_opt_config"]
        self.average_method_hipe4ml = data_param["hipe4ml"]["roc_auc_average"]
        self.nfold_hipe4ml = data_param["hipe4ml"]["hyper_par_opt"]["nfolds"]
        self.init_points = data_param["hipe4ml"]["hyper_par_opt"]["initpoints"]
        self.n_iter_hipe4ml = data_param["hipe4ml"]["hyper_par_opt"]["niter"]
        self.njobs_hipe4ml = data_param["hipe4ml"]["hyper_par_opt"]["njobs"]
        self.roc_method_hipe4ml = data_param["hipe4ml"]["roc_auc_approach"]
        self.raw_output_hipe4ml = data_param["hipe4ml"]["raw_output"]
        self.train_test_log_hipe4ml = data_param["hipe4ml"]["train_test_log"]

        self.multiclass_labels = data_param["ml"].get("multiclass_labels",
                                                      None)

        self.logger.info("Using the following training variables: %s",
                         self.v_train)

    def preparesample(self):
        self.logger.info("Prepare Sample for hipe4ml")

        self.signalhandler = TreeHandler(self.inputtreemc, 'treeMLDplus')
        nsigcand = self.signalhandler.get_n_cand()
        self.datahandler = TreeHandler(self.inputtreedata, 'treeMLDplus')
        self.bkghandler = self.datahandler.get_subset(self.s_selbkgml,
                                                      size=nsigcand *
                                                      self.v_bkgoversigfrac)
        self.traintestdata = train_test_generator(
            [self.signalhandler, self.bkghandler], [self.v_sig, self.v_bkg],
            test_size=self.test_frac,
            random_state=self.rnd_splt)

    def load_hipe4mlmodel(self):
        self.logger.info("Loading hipe4ml model")
        self.v_train = self.signalhandler.get_var_names()
        self.v_train.remove('inv_mass')
        self.v_train.remove('pt_cand')

        model_xgboost = xgb.XGBClassifier()
        self.p_hipe4ml_model = ModelHandler(model_xgboost, self.v_train)

    def set_hipe4ml_modelpar(self):
        self.logger.info("Setting hipe4ml hyperparameters")
        self.p_hipe4ml_model.set_model_params(self.v_hipe4ml_pars)

    def do_hipe4mlhyperparopti(self):
        self.logger.info("Optimising hipe4ml hyperparameters (Bayesian)")

        if not (self.average_method_hipe4ml in ['macro', 'weighted']
                and self.roc_method_hipe4ml in ['ovo', 'ovr']):
            self.logger.fatal("Selected ROC configuration is not valid!")

        if self.average_method_hipe4ml == 'weighted':
            metric = f'roc_auc_{self.roc_method_hipe4ml}_{self.average_method_hipe4ml}'
        else:
            metric = f'roc_auc_{self.roc_method_hipe4ml}'

        hypparsfile = f'{self.dirmlout}/HyperParOpt_pT_{self.p_binmin}_{self.p_binmax}.txt'
        outfilehyppars = open(hypparsfile, 'wt')
        sys.stdout = outfilehyppars
        self.p_hipe4ml_model.optimize_params_bayes(self.traintestdata,
                                                   self.bayesoptconfig_hipe4ml,
                                                   metric, self.nfold_hipe4ml,
                                                   self.init_points,
                                                   self.n_iter_hipe4ml,
                                                   self.njobs_hipe4ml)
        outfilehyppars.close()
        sys.stdout = sys.__stdout__
        self.logger.info("Performing hyper-parameters optimisation: Done!")

    def do_hipe4mltrain(self):
        self.logger.info("Training + testing hipe4ml model")
        t0 = time.time()

        self.p_hipe4ml_model.train_test_model(self.traintestdata,
                                              self.average_method_hipe4ml,
                                              self.roc_method_hipe4ml)
        self.ypredtrain_hipe4ml = self.p_hipe4ml_model.predict(
            self.traintestdata[0], self.raw_output_hipe4ml)
        self.ypredtest_hipe4ml = self.p_hipe4ml_model.predict(
            self.traintestdata[2], self.raw_output_hipe4ml)

        modelhandlerfile = f'{self.dirmlout}/ModelHandler_pT_{self.p_binmin}_{self.p_binmax}.pkl'
        self.p_hipe4ml_model.dump_model_handler(modelhandlerfile)
        modelfile = f'{self.dirmlout}/ModelHandler_pT_{self.p_binmin}_{self.p_binmax}.model'
        self.p_hipe4ml_model.dump_original_model(modelfile)

        self.logger.info("Training + testing hipe4ml: Done!")
        self.logger.info("Time elapsed = %.3f", time.time() - t0)

    def do_hipe4mlplot(self):
        self.logger.info("Plotting hipe4ml model")

        leglabels = ["Background", "Prompt signal"]
        outputlabels = ["Bkg", "SigPrompt"]

        # _____________________________________________
        plot_utils.plot_distr([self.bkghandler, self.signalhandler],
                              self.v_train, 100, leglabels)
        plt.subplots_adjust(left=0.06,
                            bottom=0.06,
                            right=0.99,
                            top=0.96,
                            hspace=0.55,
                            wspace=0.55)
        figname = f'{self.dirmlplot}/DistributionsAll_pT_{self.p_binmin}_{self.p_binmax}.pdf'
        plt.savefig(figname)
        plt.close('all')
        # _____________________________________________
        corrmatrixfig = plot_utils.plot_corr(
            [self.bkghandler, self.signalhandler], self.v_train, leglabels)
        for figg, labb in zip(corrmatrixfig, outputlabels):
            plt.figure(figg.number)
            plt.subplots_adjust(left=0.2, bottom=0.25, right=0.95, top=0.9)
            figname = f'{self.dirmlplot}/CorrMatrix{labb}_pT_{self.p_binmin}_{self.p_binmax}.pdf'
            figg.savefig(figname)
        # _____________________________________________
        plt.rcParams["figure.figsize"] = (10, 7)
        mloutputfig = plot_utils.plot_output_train_test(
            self.p_hipe4ml_model,
            self.traintestdata,
            80,
            self.raw_output_hipe4ml,
            leglabels,
            self.train_test_log_hipe4ml,
            density=True)
        figname = f'{self.dirmlplot}/MLOutputDistr_pT_{self.p_binmin}_{self.p_binmax}.pdf'
        mloutputfig.savefig(figname)
        # _____________________________________________
        plt.rcParams["figure.figsize"] = (10, 9)
        roccurvefig = plot_utils.plot_roc(self.traintestdata[3],
                                          self.ypredtest_hipe4ml, None,
                                          leglabels,
                                          self.average_method_hipe4ml,
                                          self.roc_method_hipe4ml)
        figname = f'{self.dirmlplot}/ROCCurveAll_pT_{self.p_binmin}_{self.p_binmax}.pdf'
        roccurvefig.savefig(figname)
        # _____________________________________________
        plt.rcParams["figure.figsize"] = (10, 9)
        roccurvettfig = plot_utils.plot_roc_train_test(
            self.traintestdata[3], self.ypredtest_hipe4ml,
            self.traintestdata[1], self.ypredtrain_hipe4ml, None, leglabels,
            self.average_method_hipe4ml, self.roc_method_hipe4ml)
        figname = f'{self.dirmlplot}/ROCCurveTrainTest_pT_{self.p_binmin}_{self.p_binmax}.pdf'
        roccurvettfig.savefig(figname)
        # _____________________________________________
        precisionrecallfig = plot_utils.plot_precision_recall(
            self.traintestdata[3], self.ypredtest_hipe4ml, leglabels)
        figname = f'{self.dirmlplot}/PrecisionRecallAll_pT_{self.p_binmin}_{self.p_binmax}.pdf'
        precisionrecallfig.savefig(figname)
        # _____________________________________________
        plt.rcParams["figure.figsize"] = (12, 7)
        featuresimportancefig = plot_utils.plot_feature_imp(
            self.traintestdata[2][self.v_train], self.traintestdata[3],
            self.p_hipe4ml_model, leglabels)
        for i in range(0, len(featuresimportancefig)):
            figname = (f'{self.dirmlplot}/FeatureImportanceOpt{i}_'
                       f'pT_{self.p_binmin}_{self.p_binmax}.pdf')
            featuresimportancefig[i].savefig(figname)