コード例 #1
0
def handle_add_torch(args):
    args = MSGPackSerializer.loads(args)
    tensor = runtime_pb2.Tensor()
    tensor.ParseFromString(args[0])
    result = deserialize_torch_tensor(tensor)

    for i in range(1, len(args)):
        tensor = runtime_pb2.Tensor()
        tensor.ParseFromString(args[i])
        result = result + deserialize_torch_tensor(tensor)

    return serialize_torch_tensor(result).SerializeToString()
コード例 #2
0
ファイル: grpc.py プロジェクト: swoopyy/hivemind
def split_for_streaming(serialized_tensor: runtime_pb2.Tensor,
                        chunk_size_bytes: int) -> Iterator[runtime_pb2.Tensor]:
    """ Split serialized_tensor into multiple chunks for gRPC streaming """
    buffer = memoryview(serialized_tensor.buffer)
    num_chunks = len(range(0, len(buffer), chunk_size_bytes))
    yield runtime_pb2.Tensor(compression=serialized_tensor.compression,
                             buffer=buffer[:chunk_size_bytes].tobytes(),
                             chunks=num_chunks,
                             size=serialized_tensor.size,
                             dtype=serialized_tensor.dtype,
                             requires_grad=serialized_tensor.requires_grad)
    for chunk_start in range(chunk_size_bytes, len(buffer), chunk_size_bytes):
        yield runtime_pb2.Tensor(buffer=buffer[chunk_start:chunk_start +
                                               chunk_size_bytes].tobytes())
コード例 #3
0
ファイル: grpc.py プロジェクト: swoopyy/hivemind
def serialize_torch_tensor(tensor: torch.Tensor,
                           compression_type=CompressionType.NONE,
                           allow_inplace=False) -> runtime_pb2.Tensor:
    assert tensor.device == torch.device('cpu')
    if compression_type == CompressionType.MEANSTD_LAST_AXIS_FLOAT16:
        assert tensor.dtype == torch.float32

        tensor = tensor if allow_inplace else tensor.clone()
        means = torch.mean(tensor, dim=-1, keepdim=True)
        tensor.sub_(means)

        stds = torch.square(tensor).sum(dim=-1, keepdim=True).div_(
            tensor.shape[-1]).sqrt_()
        tensor.div_(stds)
        tensor = tensor.clamp_(-FP16_MAX, FP16_MAX).to(torch.float16)

        data = b''.join((tensor.numpy().tobytes(), means.numpy().tobytes(),
                         stds.numpy().tobytes()))

        proto = runtime_pb2.Tensor(compression=compression_type,
                                   buffer=data,
                                   size=tensor.shape,
                                   dtype='compressed_float32',
                                   requires_grad=tensor.requires_grad)
    elif compression_type == CompressionType.FLOAT16:
        assert tensor.dtype == torch.float32

        tensor = tensor if allow_inplace else tensor.clone()
        tensor = tensor.clamp_(-FP16_MAX, FP16_MAX).to(torch.float16)

        data = tensor.numpy().tobytes()

        proto = runtime_pb2.Tensor(compression=compression_type,
                                   buffer=data,
                                   size=tensor.shape,
                                   dtype='clamped_float32',
                                   requires_grad=tensor.requires_grad)
    elif compression_type == CompressionType.NONE:
        array = tensor.numpy()
        proto = runtime_pb2.Tensor(compression=compression_type,
                                   buffer=array.tobytes(),
                                   size=array.shape,
                                   dtype=array.dtype.name,
                                   requires_grad=tensor.requires_grad)
    else:
        raise ValueError(f"Unknown compression type: {compression_type}")

    return proto
コード例 #4
0
ファイル: grpc.py プロジェクト: yuejiesong1900/hivemind
def serialize_torch_tensor(tensor: torch.Tensor) -> runtime_pb2.Tensor:
    array = tensor.numpy()
    proto = runtime_pb2.Tensor(buffer=array.tobytes(),
                               size=array.shape,
                               dtype=array.dtype.name,
                               requires_grad=tensor.requires_grad)
    return proto
コード例 #5
0
ファイル: grpc.py プロジェクト: swoopyy/hivemind
def combine_from_streaming(
        stream: Iterable[runtime_pb2.Tensor]) -> runtime_pb2.Tensor:
    """ Restore a result of split_into_chunks into a single serialized tensor """
    stream = iter(stream)
    first_chunk = next(stream)
    serialized_tensor = runtime_pb2.Tensor()
    serialized_tensor.CopyFrom(first_chunk)
    buffer_chunks = [first_chunk.buffer]
    for tensor_part in stream:
        buffer_chunks.append(tensor_part.buffer)
    serialized_tensor.buffer = b''.join(buffer_chunks)
    return serialized_tensor
コード例 #6
0
async def test_call_peer_torch_square(test_input,
                                      expected,
                                      handler_name="handle"):
    handle = handle_square_torch
    server = await P2P.create()
    await server.add_stream_handler(handler_name, handle)

    nodes = bootstrap_from([server])
    client = await P2P.create(bootstrap=True, bootstrap_peers=nodes)

    await client.wait_for_at_least_n_peers(1)

    inp = serialize_torch_tensor(test_input).SerializeToString()
    result_pb = await client.call_peer_handler(server.id, handler_name, inp)
    result = runtime_pb2.Tensor()
    result.ParseFromString(result_pb)
    result = deserialize_torch_tensor(result)
    assert torch.allclose(result, expected)

    await server.stop_listening()
    await server.shutdown()
    await client.shutdown()
コード例 #7
0
ファイル: compression.py プロジェクト: systemshift/hivemind
def serialize_torch_tensor(tensor: torch.Tensor,
                           compression_type=CompressionType.NONE,
                           allow_inplace=False) -> runtime_pb2.Tensor:
    assert tensor.device == torch.device('cpu')
    if compression_type == CompressionType.MEANSTD_16BIT:
        assert tensor.dtype == torch.float32

        tensor = tensor if allow_inplace else tensor.clone()
        means = torch.mean(tensor, dim=-1, keepdim=True)
        tensor.sub_(means)

        stds = torch.square(tensor).sum(dim=-1, keepdim=True).div_(
            tensor.shape[-1]).sqrt_()
        stds.clamp_min_(FP32_EPS)
        tensor.div_(stds)
        tensor = tensor.clamp_(-FP16_MAX, FP16_MAX).to(torch.float16)

        data = b''.join((tensor.numpy().tobytes(), means.numpy().tobytes(),
                         stds.numpy().tobytes()))

        proto = runtime_pb2.Tensor(compression=compression_type,
                                   buffer=data,
                                   size=tensor.shape,
                                   dtype='compressed_float32',
                                   requires_grad=tensor.requires_grad)
    elif compression_type == CompressionType.FLOAT16:
        assert tensor.dtype == torch.float32

        tensor = tensor if allow_inplace else tensor.clone()
        tensor = tensor.clamp_(-FP16_MAX, FP16_MAX).to(torch.float16)

        data = tensor.numpy().tobytes()

        proto = runtime_pb2.Tensor(compression=compression_type,
                                   buffer=data,
                                   size=tensor.shape,
                                   dtype='clamped_float32',
                                   requires_grad=tensor.requires_grad)
    elif compression_type == CompressionType.NONE:
        array = tensor.numpy()
        proto = runtime_pb2.Tensor(compression=compression_type,
                                   buffer=array.tobytes(),
                                   size=array.shape,
                                   dtype=array.dtype.name,
                                   requires_grad=tensor.requires_grad)
    elif compression_type in (CompressionType.QUANTILE_8BIT,
                              CompressionType.UNIFORM_8BIT):
        assert tensor.dtype == torch.float32

        if compression_type == CompressionType.QUANTILE_8BIT:
            quantized, lookup = _quantile_encode_approx(
                tensor.detach(), NUM_BITS_QUANTILE_COMPRESSION)
        elif compression_type == CompressionType.UNIFORM_8BIT:
            quantized, lookup = _uint8_uniform_buckets_encode(
                tensor.detach(), UNIFORM_BUCKETS_STD_RANGE)
        data = b''.join((lookup.numpy().tobytes(),
                         quantized.numpy().astype(np.uint8).tobytes()))

        proto = runtime_pb2.Tensor(compression=compression_type,
                                   buffer=data,
                                   size=tensor.shape,
                                   dtype='compressed_float32',
                                   requires_grad=tensor.requires_grad)
    else:
        raise ValueError(f"Unknown compression type: {compression_type}")

    return proto
コード例 #8
0
def handle_square_torch(x):
    tensor = runtime_pb2.Tensor()
    tensor.ParseFromString(x)
    tensor = deserialize_torch_tensor(tensor)
    result = tensor**2
    return serialize_torch_tensor(result).SerializeToString()