コード例 #1
0
 def _do_forward_pass(self, framelogprob):
     # Based on hmmlearn's _BaseHMM
     safe_startmat = self.startprob_ + np.finfo(float).eps
     safe_transmat = self.transmat_ + np.finfo(float).eps
     n_samples, n_components = framelogprob.shape
     fwdlattice = np.zeros((n_samples, n_components))
     _hmmc._forward(n_samples, n_components, np.log(safe_startmat),
                    np.log(safe_transmat), framelogprob, fwdlattice)
     return logsumexp(fwdlattice[-1]), fwdlattice
コード例 #2
0
ファイル: base.py プロジェクト: simonkamronn/autohmm
 def _do_forward_pass(self, framelogprob):
     # Based on hmmlearn's _BaseHMM
     safe_startmat = self.startprob_ + np.finfo(float).eps
     safe_transmat = self.transmat_ + np.finfo(float).eps
     n_samples, n_components = framelogprob.shape
     fwdlattice = np.zeros((n_samples, n_components))
     _hmmc._forward(n_samples, n_components,
                    np.log(safe_startmat),
                    np.log(safe_transmat),
                    framelogprob, fwdlattice)
     return logsumexp(fwdlattice[-1]), fwdlattice
コード例 #3
0
 def _do_score_samples(self, data, lengths=None):  # adapted hmmlearn
     # TODO: Support lengths arguement
     framelogprob = self._compute_log_likelihood(data)
     logprob, fwdlattice = self._do_forward_pass(framelogprob)
     bwdlattice = self._do_backward_pass(framelogprob)
     gamma = fwdlattice + bwdlattice
     # gamma is guaranteed to be correctly normalized by logprob at
     # all frames, unless we do approximate inference using pruning.
     # So, we will normalize each frame explicitly in case we
     # pruned too aggressively.
     posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
     posteriors += np.finfo(np.float64).eps
     posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1))
     return logprob, posteriors
コード例 #4
0
ファイル: base.py プロジェクト: simonkamronn/autohmm
 def _do_score_samples(self, data, lengths=None):  # adapted hmmlearn
     # TODO: Support lengths arguement
     framelogprob = self._compute_log_likelihood(data)
     logprob, fwdlattice = self._do_forward_pass(framelogprob)
     bwdlattice = self._do_backward_pass(framelogprob)
     gamma = fwdlattice + bwdlattice
     # gamma is guaranteed to be correctly normalized by logprob at
     # all frames, unless we do approximate inference using pruning.
     # So, we will normalize each frame explicitly in case we
     # pruned too aggressively.
     posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
     posteriors += np.finfo(np.float64).eps
     posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1))
     return logprob, posteriors
コード例 #5
0
 def _decode_map(self, data):  # adapted hmmlearn
     framelogprob = self._compute_log_likelihood(data)
     logprob, fwdlattice = self._do_forward_pass(framelogprob)
     bwdlattice = self._do_backward_pass(framelogprob)
     gamma = fwdlattice + bwdlattice
     # gamma is guaranteed to be correctly normalized by logprob at
     # all frames, unless we do approximate inference using pruning.
     # So, we will normalize each frame explicitly in case we
     # pruned too aggressively.
     posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
     posteriors += np.finfo(np.float64).eps
     posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1))
     state_sequence = np.argmax(posteriors, axis=1)
     map_logprob = np.max(posteriors, axis=1).sum()
     return map_logprob, state_sequence
コード例 #6
0
ファイル: base.py プロジェクト: simonkamronn/autohmm
 def _decode_map(self, data):  # adapted hmmlearn
     framelogprob = self._compute_log_likelihood(data)
     logprob, fwdlattice = self._do_forward_pass(framelogprob)
     bwdlattice = self._do_backward_pass(framelogprob)
     gamma = fwdlattice + bwdlattice
     # gamma is guaranteed to be correctly normalized by logprob at
     # all frames, unless we do approximate inference using pruning.
     # So, we will normalize each frame explicitly in case we
     # pruned too aggressively.
     posteriors = np.exp(gamma.T - logsumexp(gamma, axis=1)).T
     posteriors += np.finfo(np.float64).eps
     posteriors /= np.sum(posteriors, axis=1).reshape((-1, 1))
     state_sequence = np.argmax(posteriors, axis=1)
     map_logprob = np.max(posteriors, axis=1).sum()
     return map_logprob, state_sequence
コード例 #7
0
    def _accumulate_sufficient_statistics(self, stats, X, framelogprob,
                                          posteriors, fwdlattice, bwdlattice):
        """Updates sufficient statistics from a given sample.
        Parameters
        ----------
        stats : dict
            Sufficient statistics as returned by
            :meth:`~base._BaseHMM._initialize_sufficient_statistics`.
        X : array, shape (n_samples, n_features)
            Sample sequence.
        framelogprob : array, shape (n_samples, n_components)
            Log-probabilities of each sample under each of the model states.
        posteriors : array, shape (n_samples, n_components)
            Posterior probabilities of each sample being generated by each
            of the model states.
        fwdlattice, bwdlattice : array, shape (n_samples, n_components)
            Log-forward and log-backward probabilities.
        """
        # Based on hmmlearn's _BaseHMM
        safe_transmat = self.transmat_ + np.finfo(float).eps
        stats['nobs'] += 1
        if 's' in self.params:
            stats['start'] += posteriors[0]
        if 't' in self.params:
            n_samples, n_components = framelogprob.shape
            # when the sample is of length 1, it contains no transitions
            # so there is no reason to update our trans. matrix estimate
            if n_samples <= 1:
                return

            lneta = np.zeros((n_samples - 1, n_components, n_components))
            _hmmc._compute_lneta(n_samples, n_components, fwdlattice,
                                 np.log(safe_transmat), bwdlattice,
                                 framelogprob, lneta)
            stats['trans'] += np.exp(logsumexp(lneta, axis=0))
            # stats['trans'] = np.round(stats['trans'])
            # if np.sum(stats['trans']) != X.shape[0]-1:
            #     warnings.warn("transmat counts != n_samples", RuntimeWarning)
            #     import pdb; pdb.set_trace()
            stats['trans'][np.where(stats['trans'] < 0.01)] = 0.0
コード例 #8
0
ファイル: base.py プロジェクト: simonkamronn/autohmm
    def _accumulate_sufficient_statistics(self, stats, X, framelogprob,
                                          posteriors, fwdlattice, bwdlattice):
        """Updates sufficient statistics from a given sample.
        Parameters
        ----------
        stats : dict
            Sufficient statistics as returned by
            :meth:`~base._BaseHMM._initialize_sufficient_statistics`.
        X : array, shape (n_samples, n_features)
            Sample sequence.
        framelogprob : array, shape (n_samples, n_components)
            Log-probabilities of each sample under each of the model states.
        posteriors : array, shape (n_samples, n_components)
            Posterior probabilities of each sample being generated by each
            of the model states.
        fwdlattice, bwdlattice : array, shape (n_samples, n_components)
            Log-forward and log-backward probabilities.
        """
        # Based on hmmlearn's _BaseHMM
        safe_transmat = self.transmat_ + np.finfo(float).eps
        stats['nobs'] += 1
        if 's' in self.params:
            stats['start'] += posteriors[0]
        if 't' in self.params:
            n_samples, n_components = framelogprob.shape
            # when the sample is of length 1, it contains no transitions
            # so there is no reason to update our trans. matrix estimate
            if n_samples <= 1:
                return

            lneta = np.zeros((n_samples - 1, n_components, n_components))
            _hmmc._compute_lneta(n_samples, n_components, fwdlattice,
                                 np.log(safe_transmat),
                                 bwdlattice, framelogprob, lneta)
            stats['trans'] += np.exp(logsumexp(lneta, axis=0))
            # stats['trans'] = np.round(stats['trans'])
            # if np.sum(stats['trans']) != X.shape[0]-1:
            #     warnings.warn("transmat counts != n_samples", RuntimeWarning)
            #     import pdb; pdb.set_trace()
            stats['trans'][np.where(stats['trans'] < 0.01)] = 0.0