def setUp(self): """ Read a sample catalogue containing 8 events after instantiating the CsvCatalogueParser object. """ filename = os.path.join(self.BASE_DATA_PATH, 'test_catalogue.csv') parser = CsvCatalogueParser(filename) self.cat = parser.read_file()
def test_specifying_years(self): """ Tests that when the catalogue is parsed with the specified start and end years that this are recognised as attributes of the catalogue """ filename = os.path.join(self.BASE_DATA_PATH, 'test_catalogue.csv') parser = CsvCatalogueParser(filename) self.cat = parser.read_file(start_year=1000, end_year=1100) self.assertEqual(self.cat.start_year, 1000) self.assertEqual(self.cat.end_year, 1100)
def test_catalogue_writer_no_purging(self): ''' Tests the writer without any purging ''' # Write to file writer = CsvCatalogueWriter(self.output_filename) writer.write_file(self.catalogue) parser = CsvCatalogueParser(self.output_filename) cat2 = parser.read_file() self.check_catalogues_are_equal(self.catalogue, cat2)
def test_without_specifying_years(self): """ Tests that when the catalogue is parsed without specifying the start and end year that the start and end year come from the minimum and maximum in the catalogue """ filename = os.path.join(self.BASE_DATA_PATH, 'test_catalogue.csv') parser = CsvCatalogueParser(filename) self.cat = parser.read_file() self.assertEqual(self.cat.start_year, np.min(self.cat.data['year'])) self.assertEqual(self.cat.end_year, np.max(self.cat.data['year']))
def decluster_iscgem_gk74(hmtk_csv): from hmtk.parsers.catalogue.csv_catalogue_parser import CsvCatalogueParser from writers import htmk2shp_isc from os import path # parse HMTK csv parser = CsvCatalogueParser(hmtk_csv) cat = parser.read_file() # write shapefile htmk2shp_isc(cat, path.join('shapefiles', 'ISC-GEM_V4_hmtk_full.shp')) decluster_GK74(cat, hmtk_csv)
def parse_orig_hmtk_cat(hmtk_csv): print 'parsing HMTK catalogue...' # parse HMTK csv using modified version of HMTK parser parser = CsvCatalogueParser(hmtk_csv) hmtkcat = parser.read_file() # get number of earthquakes neq = len(hmtkcat.data['magnitude']) # reformat HMTK dict to one expected for code below cat = [] for i in range(0, neq): # first make datestr try: if not isnan(hmtkcat.data['second'][i]): datestr = str(hmtkcat.data['eventID'][i]) \ + str('%2.2f' % hmtkcat.data['second'][i]) else: datestr = str(hmtkcat.data['eventID'][i]) + '00.00' evdt = datetime.strptime(datestr, '%Y%m%d%H%M%S.%f') # if ID not date form, do it the hard way! except: if hmtkcat.data['day'][i] == 0: hmtkcat.data['day'][i] = 1 if hmtkcat.data['month'][i] == 0: hmtkcat.data['month'][i] = 1 datestr = ''.join((str(hmtkcat.data['year'][i]), str('%02d' % hmtkcat.data['month'][i]), str('%02d' % hmtkcat.data['day'][i]), str('%02d' % hmtkcat.data['hour'][i]), str('%02d' % hmtkcat.data['minute'][i]))) evdt = datetime.strptime(datestr, '%Y%m%d%H%M') tdict = {'datetime':evdt, 'prefmag':hmtkcat.data['magnitude'][i], \ 'lon':hmtkcat.data['longitude'][i], 'lat':hmtkcat.data['latitude'][i], \ 'dep':hmtkcat.data['depth'][i], 'year':hmtkcat.data['year'][i], \ 'month':hmtkcat.data['month'][i], 'fixdep':0, 'prefmagtype':'MW', \ 'auth':hmtkcat.data['Agency'][i]} cat.append(tdict) return cat, neq
def test_catalogue_writer_only_flag_purging(self): ''' Tests the writer only purging according to the flag ''' # Write to file writer = CsvCatalogueWriter(self.output_filename) writer.write_file(self.catalogue, flag_vector=self.flag) parser = CsvCatalogueParser(self.output_filename) cat2 = parser.read_file() expected_catalogue = Catalogue() expected_catalogue.data['eventID'] = ['1', '2', '3', '4'] expected_catalogue.data['magnitude'] = np.array([5.6, 5.4, 4.8, 4.3]) expected_catalogue.data['year'] = np.array([1960, 1965, 1970, 1980]) expected_catalogue.data['ErrorStrike'] = np.array( [np.nan, np.nan, np.nan, np.nan]) self.check_catalogues_are_equal(expected_catalogue, cat2)
def test_catalogue_writer_only_mag_table_purging(self): ''' Tests the writer only purging according to the magnitude table ''' # Write to file writer = CsvCatalogueWriter(self.output_filename) writer.write_file(self.catalogue, magnitude_table=self.magnitude_table) parser = CsvCatalogueParser(self.output_filename) cat2 = parser.read_file() expected_catalogue = Catalogue() expected_catalogue.data['eventID'] = ['1', '3', '5'] expected_catalogue.data['magnitude'] = np.array([5.6, 4.8, 5.0]) expected_catalogue.data['year'] = np.array([1960, 1970, 1990]) expected_catalogue.data['ErrorStrike'] = np.array( [np.nan, np.nan, np.nan]) self.check_catalogues_are_equal(expected_catalogue, cat2)
def test_catalogue_writer_only_flag_purging(self): ''' Tests the writer only purging according to the flag ''' # Write to file writer = CsvCatalogueWriter(self.output_filename) writer.write_file(self.catalogue, flag_vector=self.flag) parser = CsvCatalogueParser(self.output_filename) cat2 = parser.read_file() expected_catalogue = Catalogue() expected_catalogue.data['eventID'] = np.array([1, 2, 3, 4]) expected_catalogue.data['magnitude'] = np.array([5.6, 5.4, 4.8, 4.3]) expected_catalogue.data['year'] = np.array([1960, 1965, 1970, 1980]) expected_catalogue.data['ErrorStrike'] = np.array([np.nan, np.nan, np.nan, np.nan]) self.check_catalogues_are_equal(expected_catalogue, cat2)
def test_catalogue_writer_only_mag_table_purging(self): ''' Tests the writer only purging according to the magnitude table ''' # Write to file writer = CsvCatalogueWriter(self.output_filename) writer.write_file(self.catalogue, magnitude_table=self.magnitude_table) parser = CsvCatalogueParser(self.output_filename) cat2 = parser.read_file() expected_catalogue = Catalogue() expected_catalogue.data['eventID'] = np.array([1, 3, 5]) expected_catalogue.data['magnitude'] = np.array([5.6, 4.8, 5.0]) expected_catalogue.data['year'] = np.array([1960, 1970, 1990]) expected_catalogue.data['ErrorStrike'] =np.array([np.nan, np.nan, np.nan]) self.check_catalogues_are_equal(expected_catalogue, cat2)
def test_catalogue_writer_both_purging(self): ''' Tests the writer only purging according to the magnitude table and the flag vector ''' # Write to file writer = CsvCatalogueWriter(self.output_filename) writer.write_file(self.catalogue, flag_vector=self.flag, magnitude_table=self.magnitude_table) parser = CsvCatalogueParser(self.output_filename) cat2 = parser.read_file() expected_catalogue = Catalogue() expected_catalogue.data['eventID'] = ['1', '3'] expected_catalogue.data['magnitude'] = np.array([5.6, 4.8]) expected_catalogue.data['year'] = np.array([1960, 1970]) expected_catalogue.data['ErrorStrike'] = np.array([np.nan, np.nan]) self.check_catalogues_are_equal(expected_catalogue, cat2)
def test_catalogue_writer_both_purging(self): ''' Tests the writer only purging according to the magnitude table and the flag vector ''' # Write to file writer = CsvCatalogueWriter(self.output_filename) writer.write_file(self.catalogue, flag_vector=self.flag, magnitude_table=self.magnitude_table) parser = CsvCatalogueParser(self.output_filename) cat2 = parser.read_file() expected_catalogue = Catalogue() expected_catalogue.data['eventID'] = np.array([1, 3]) expected_catalogue.data['magnitude'] = np.array([5.6, 4.8]) expected_catalogue.data['year'] = np.array([1960, 1970]) expected_catalogue.data['ErrorStrike'] = np.array([np.nan, np.nan]) self.check_catalogues_are_equal(expected_catalogue, cat2)
plt.rcParams['pdf.fonttype'] = 42 mpl.style.use('classic') ########################################################################################## # parse epicentres ########################################################################################## # parse HMTK csv ''' hmtk_csv = '/nas/gemd/ehp/georisk_earthquake/modelling/sandpits/tallen/NSHA2018/catalogue/data/NSHA18CAT_V0.1_hmtk_declustered.csv' parser = CsvCatalogueParser(hmtk_csv) declcat = parser.read_file() ''' hmtk_csv = '/nas/gemd/ehp/georisk_earthquake/modelling/sandpits/tallen/NSHA2018/catalogue/data/NSHA18CAT_V0.1_hmtk_declustered.csv' parser = CsvCatalogueParser(hmtk_csv) cat = parser.read_file() ########################################################################################## #108/152/-44/-8 urcrnrlat = -8. llcrnrlat = -46. urcrnrlon = 157. llcrnrlon = 109. lon_0 = mean([llcrnrlon, urcrnrlon]) lat_1 = percentile([llcrnrlat, urcrnrlat], 25) lat_2 = percentile([llcrnrlat, urcrnrlat], 75) fig = plt.figure(figsize=(20, 12)) ax = fig.add_subplot(121) plt.tick_params(labelsize=8)
### Catalogue ### #input_catalogue_file = 'data_input/hmtk_sa3' input_catalogue_file = 'data_input/hmtk_bsb2013' ### ### Catalogue cache or read/cache ### try: catalogue = pickle.load(open(input_catalogue_file + ".pkl", 'rb')) except: parser = CsvCatalogueParser(input_catalogue_file + ".csv") catalogue = parser.read_file() print 'Input complete: %s events in catalogue' % catalogue.get_number_events() print 'Catalogue Covers the Period: %s to %s' % (catalogue.start_year, catalogue.end_year) # Sort catalogue chronologically catalogue.sort_catalogue_chronologically() print 'Catalogue sorted chronologically!' valid_magnitudes = np.logical_not(np.isnan(catalogue.data['magnitude'])) catalogue.select_catalogue_events(valid_magnitudes) valid_magnitudes = catalogue.data['magnitude'] >= 3.0 catalogue.select_catalogue_events(valid_magnitudes) #print catalogue.data['magnitude'] valid_depths = np.logical_not(np.isnan(catalogue.data['depth'])) catalogue.select_catalogue_events(valid_depths)
def read_catalog(input_catalogue_file, m_min=3.0): ### ### Catalogue cache or read/cache ### try: print '--Reading Catalog' print input_catalogue_file catalogue = pickle.load(open(input_catalogue_file + ".pkl", 'rb')) print 'Input complete: %s events in catalogue' % catalogue.get_number_events() print 'Catalogue Covers the Period: %s to %s' % (catalogue.start_year, catalogue.end_year) except: print '--Reading Catalog' parser = CsvCatalogueParser(input_catalogue_file + ".csv") catalogue = parser.read_file() print 'Input complete: %s events in catalogue' % catalogue.get_number_events() print 'Catalogue Covers the Period: %s to %s' % (catalogue.start_year, catalogue.end_year) # Sort catalogue chronologically catalogue.sort_catalogue_chronologically() print 'Catalogue sorted chronologically!' print '--Removing nan magnitudes' valid_magnitudes = np.logical_not(np.isnan(catalogue.data['magnitude'])) catalogue.select_catalogue_events(valid_magnitudes) print 'Input complete: %s events in catalogue' % catalogue.get_number_events() print 'Catalogue Covers the Period: %s to %s' % (catalogue.start_year, catalogue.end_year) print '--Removing magnitudes < %f'%m_min valid_magnitudes = catalogue.data['magnitude'] >= m_min catalogue.select_catalogue_events(valid_magnitudes) print 'Input complete: %s events in catalogue' % catalogue.get_number_events() print 'Catalogue Covers the Period: %s to %s' % (catalogue.start_year, catalogue.end_year) print '--Removing nan depths' valid_depths = np.logical_not(np.isnan(catalogue.data['depth'])) catalogue.select_catalogue_events(valid_depths) print 'Input complete: %s events in catalogue' % catalogue.get_number_events() print 'Catalogue Covers the Period: %s to %s' % (catalogue.start_year, catalogue.end_year) print '--Removing 0 days' valid_months = catalogue.data['day'] != 0 catalogue.select_catalogue_events(valid_months) print 'Input complete: %s events in catalogue' % catalogue.get_number_events() print 'Catalogue Covers the Period: %s to %s' % (catalogue.start_year, catalogue.end_year) # Cache # Set-up the file writer print '--Caching' output_file_name = input_catalogue_file + '.csv' #writer = CsvCatalogueWriter(output_file_name) #writer.write_file(catalogue) #exit() #print 'File %s written' % output_file_name f=open(input_catalogue_file + ".pkl",'wb') pickle.dump(catalogue, f) f.close() return catalogue
kagan_i1 = probs.get_i1() print "Poisson LLH = %.6f, I0 = %.6f, I1 = %.6f, I' = %.6f" % ( poiss_llh, kagan_i0, kagan_i1, kagan_i0 - kagan_i1) SARA_COMP_TABLE = np.array([[1992., 4.5], [1974., 5.], [1964., 5.5], [1954., 5.75], [1949., 6.], [1949., 6.5], [1930., 7.0]]) SARA_CAT_FILE = "catalogue/sara_all_v07_harm_per123_dist_crustal_clean.csv" SARA_DECLUST_CAT = "catalogue/sara_cat_shallow_declust.csv" COMP_FILE = "sam_completeness_zones.hdf5" if __name__ == "__main__": # Load in catalogue parser = CsvCatalogueParser(SARA_DECLUST_CAT) cat1 = parser.read_file() idx = cat1.data["magnitude"] >= 3.0 cat1.purge_catalogue(idx) bbox = [-90.5, -30.0, 0.1, -60.5, 15.5, 0.1, 0., 100.0, 100.0] config = { "k": 5, "r_min": 0.0005 / 25.0, "bvalue": 1.0, "mmin": 3.0, "learning_start": 1930, "learning_end": 2003, "target_start": 2004, "target_end": 2013 } # Run run_helmstetter_spatial(cat1,
# -*- coding: utf-8 -*- import numpy as np from hmtk.parsers.catalogue.csv_catalogue_parser import CsvCatalogueParser catalogue_file = "data_input/hmtk_bsb2013_pp_decluster.csv" #from hmtk.seismicity.catalogue import Catalogue # catalogue parser = CsvCatalogueParser(catalogue_file) catalogue = parser.read_file() catalogue.sort_catalogue_chronologically() method = "frankel1995" method = "woo1996" #method = "helmstetter2012" #method = "oq-dourado2014_b2" filename = "data_output/poe_0.1_smooth_decluster_%s.csv"%(method) filename = "data_output/poe_0.1_%s.csv"%(method) #filename = "data_output/poe_0.1_smooth_decluster_%s_cum.csv"%(method) filename = "data_output/bsb2013_helmstetter2012.csv" d = np.genfromtxt(fname=filename, #comments='#', delimiter=',',
def get_hmtk_catalogue(filename): catalogue_parser = CsvCatalogueParser(filename) return catalogue_parser.read_file()
### Catalogue ### #input_catalogue_file = 'data_input/hmtk_sa3' input_catalogue_file = 'data_input/hmtk_bsb2013' ### ### Catalogue cache or read/cache ### try: catalogue = pickle.load(open(input_catalogue_file + ".pkl", 'rb')) except: parser = CsvCatalogueParser(input_catalogue_file + ".csv") catalogue = parser.read_file() print 'Input complete: %s events in catalogue' % catalogue.get_number_events( ) print 'Catalogue Covers the Period: %s to %s' % (catalogue.start_year, catalogue.end_year) # Sort catalogue chronologically catalogue.sort_catalogue_chronologically() print 'Catalogue sorted chronologically!' valid_magnitudes = np.logical_not(np.isnan(catalogue.data['magnitude'])) catalogue.select_catalogue_events(valid_magnitudes) valid_magnitudes = catalogue.data['magnitude'] >= 3.0 catalogue.select_catalogue_events(valid_magnitudes) #print catalogue.data['magnitude']
dashes=[2, 2], color='0.5', linewidth=0.75) return m ############################################################# # parse catalogue & plot ############################################################# sheef_full = path.join('2010SHEEF', 'SHEEF2010Mw2_hmtk.csv') sheef_decl = path.join('2010SHEEF', 'SHEEF2010Mw2_hmtk_declustered.csv') parser = CsvCatalogueParser(sheef_full) cat_full = parser.read_file() lonf = cat_full.data['longitude'] latf = cat_full.data['latitude'] magf = cat_full.data['magnitude'] ############################################################### # plt full catalogue ############################################################### plt.subplot(121) # map earthquakes that pass completeness m = make_basemap(cnrs) # get index of events idx = where((lonf >= cnrs[0]) & (lonf <= cnrs[1]) \
IsotropicGaussian BASE_PATH = 'data_input/' #OUTPUT_FILE = 'data_output/hmtk_bsb2013_decluster_frankel1995.csv' OUTPUT_FILE = '/Users/pirchiner/dev/pshab/data_output/hmtk_sa3_decluster_frankel1995.csv' model_name = 'hmtk_bsb2013' model_name = 'hmtk_sa3' #TEST_CATALOGUE = 'hmtk_bsb2013_pp_decluster.csv' TEST_CATALOGUE = 'hmtk_sa3_pp_decluster.csv' _CATALOGUE = os.path.join(BASE_PATH, TEST_CATALOGUE) # catalogue parser = CsvCatalogueParser(_CATALOGUE) catalogue = parser.read_file() catalogue.sort_catalogue_chronologically() #print catalogue.get_number_events() #res, spc = 0.5, 100 res, spc = 1, 50 #res, spc = 0.2, 250 # model #[xmin, xmax, spcx, ymin, ymax, spcy, zmin, spcz] map_config = { 'min_lon': -95.0, 'max_lon': -25.0, 'min_lat': -65.0, 'max_lat': 25.0,
from os import path, walk, system #from obspy.imaging.beachball import Beach from hmtk.parsers.catalogue.csv_catalogue_parser import CsvCatalogueParser, CsvCatalogueWriter from misc_tools import remove_last_cmap_colour plt.rcParams['pdf.fonttype'] = 42 mpl.style.use('classic') ########################################################################################## # parse epicentres ########################################################################################## # parse HMTK csv hmtk_csv = '/nas/gemd/ehp/georisk_earthquake/modelling/sandpits/tallen/NSHA2018/catalogue/data/merged_NSHA18-ISCGEM_hmtk.csv' parser = CsvCatalogueParser(hmtk_csv) fullcat = parser.read_file() hmtk_csv = '/nas/gemd/ehp/georisk_earthquake/modelling/sandpits/tallen/NSHA2018/catalogue/data/NSHA18CAT_V0.1_hmtk_declustered.csv' parser = CsvCatalogueParser(hmtk_csv) declcat = parser.read_file() ########################################################################################## #108/152/-44/-8 urcrnrlat = -29.5 llcrnrlat = -33.3 urcrnrlon = 118.75 llcrnrlon = 115.25 lon_0 = mean([llcrnrlon, urcrnrlon]) lat_1 = percentile([llcrnrlat, urcrnrlat], 25) lat_2 = percentile([llcrnrlat, urcrnrlat], 75)