コード例 #1
0
ファイル: weichert_test.py プロジェクト: g-weatherill/hmtk
 def test_weichert_full(self):
     """
     Tests the Weichert function for the synthetic catalogue
     """
     wchrt = Weichert()
     bval, sigmab, rate, sigma_rate = wchrt.calculate(
         self.catalogue, self.config, self.completeness)
     self.assertAlmostEqual(bval, 0.890, 3)
     self.assertAlmostEqual(sigmab, 0.015, 3)
     self.assertAlmostEqual(rate, 100.1078, 4)
     self.assertAlmostEqual(sigma_rate, 2.1218, 4)
コード例 #2
0
ファイル: weichert_test.py プロジェクト: lcui24/hmtk
 def setUp(self):
     """
     This generates a catalogue to be used for the regression.
     """
     # Generates a data set assuming b=1
     self.dmag = 0.1
     mext = np.arange(4.0, 7.01, 0.1)
     self.mval = mext[0:-1] + self.dmag / 2.0
     self.bval = 1.0
     numobs = np.flipud(np.diff(np.flipud(10.0**(-self.bval * mext + 7.0))))
     # Compute the number of observations in the different magnitude
     # intervals (according to completeness)
     numobs[0:6] *= 10
     numobs[6:13] *= 20
     numobs[13:22] *= 50
     numobs[22:] *= 100
     # Define completeness window
     compl = np.array([[1900, 1950, 1980, 1990], [6.34, 5.44, 4.74, 3.0]])
     self.compl = np.flipud(compl.transpose())
     # Compute the number of observations (i.e. earthquakes) in each
     # magnitude bin
     numobs = np.around(numobs)
     magnitude = np.zeros((np.sum(numobs)))
     year = np.zeros((np.sum(numobs))) * 1999
     # Generate the catalogue
     lidx = 0
     for mag, nobs in zip(self.mval, numobs):
         uidx = int(lidx + nobs)
         magnitude[lidx:uidx] = mag + 0.01
         year_low = compl[0, np.min(np.nonzero(compl[1, :] < mag)[0])]
         year[lidx:uidx] = (year_low + np.random.rand(uidx - lidx) *
                            (2000 - year_low))
         lidx = uidx
     # Fix the parameters that later will be used for the testing
     self.catalogue = Catalogue.make_from_dict({
         'magnitude': magnitude,
         'year': year
     })
     self.wei = Weichert()
     self.config = {'Average Type': 'Weighted'}
コード例 #3
0
    'magnitude_interval': 0.2,
    'Average Type': 'Weighted'
}

bml_recurrence = BMaxLikelihood()

bval, sigmab, seismicity_rate, sigma_rate = bml_recurrence.calculate(
    catalogue, recurrence_config, completeness_table)

print 'B-value = %9.4f +/- %9.4f' % (bval, sigmab)
print 'Rate = %9.4f +/- %9.4f' % (seismicity_rate, sigma_rate)

# In[ ]:

# Set up the configuration parameters
bwc_recurrence = Weichert()

bval, sigmab, seismicity_rate, sigma_rate = bwc_recurrence.calculate(
    catalogue, recurrence_config, completeness_table)

print 'B-value = %9.4f +/- %9.4f' % (bval, sigmab)
print 'Rate = %9.4f +/- %9.4f' % (seismicity_rate, sigma_rate)

# In[ ]:
# In[ ]:

# Set up the configuration parameters
bks_recurrence = KijkoSmit()

bval, sigmab, seismicity_rate, sigma_rate = bks_recurrence.calculate(
    catalogue, recurrence_config, completeness_table)