def eqvlat_hemispheric(ylat, vort, area, nlat_s=None, n_points=None, planet_radius=6.378e+6): """ Compute equivalent latitude in a hemispheric domain. Parameters ---------- ylat : numpy.array 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. vort : numpy.ndarray 2-d numpy array of vorticity values; dimension = (nlat, nlon). area : numpy.ndarray 2-d numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). nlat_s : int, default None The index of grid point that defines the extent of hemispheric domain from the pole. If input as None, it will be initialize as nlat // 2. n_points : int, default None Analysis resolution to calculate equivalent latitude. If input as None, it will be initialized as *nlat_s*. planet_radius : float, default 6.378e+6 radius of spherical planet of interest consistent with input 'area'. Returns ------- q_part : numpy.ndarray 1-d numpy array of value Q(y) where latitude y is given by ylat; dimension = (nlat). """ from hn2016_falwa import basis nlat = vort.shape[0] qref = np.zeros(nlat) if nlat_s is None: nlat_s = nlat // 2 if n_points is None: n_points = nlat_s # --- Southern Hemisphere --- qref1, _ = basis.eqvlat(ylat[:nlat_s], vort[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) qref[:nlat_s] = qref1 # --- Northern Hemisphere --- vort2 = -vort[::-1, :] qref2, _ = basis.eqvlat(ylat[:nlat_s], vort2[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) qref[-nlat_s:] = qref2[::-1] return qref
def equivalent_latitudes(self): """ Compute equivalent latitude with the *pv_field* stored in the object. :returns: an numpy array with dimension (nlat) of equivalent latitude array. :example: >>> barofield1 = BarotropicField(xlon, ylat, pv_field=abs_vorticity) >>> eqv_lat = barofield1.equivalent_latitudes() """ from hn2016_falwa import basis pv_field = self.pv_field area = self.area ylat = self.ylat planet_radius = self.planet_radius self.eqvlat, dummy = basis.eqvlat(ylat, pv_field, area, self.n_partitions, planet_radius=planet_radius) return self.eqvlat
def test_eqvlat(self): ''' To test whether the eqvlat function in basis.py produce a reference state of vorticity non-decreasing with latitude, given a random vorticity field. ''' q_part1, vgrad = basis.eqvlat( self.ylat, self.vort, self.area, self.nlat, planet_radius=self.planet_radius, vgrad=self.dummy_vgrad ) q_part2, _ = basis.eqvlat( self.ylat, self.vort, self.area, self.nlat, planet_radius=self.planet_radius, vgrad=None ) self.assertTrue(np.all(np.diff(q_part1) >= 0.)) self.assertEqual(q_part1.tolist(), q_part2.tolist()) self.assertTrue(vgrad is not None) self.assertEqual(vgrad.shape, q_part1.shape)
def _compute_eqvlat(self): """ Private function. Compute equivalent latitude if it has not been computed yet. """ self.eqvlat, _ = basis.eqvlat(self.ylat, self.pv_field, self.area, self.n_partitions, planet_radius=self.planet_radius) return self.eqvlat
def test_eqvlat(): ''' To test whether the eqvlat function in basis.py produce a reference state of vorticity non-decreasing with latitude, given a random vorticity field. ''' q_part1, vgrad = basis.eqvlat(ylat, vort, area, nlat, planet_radius=EARTH_RADIUS, vgrad=dummy_vgrad) q_part2, _ = basis.eqvlat(ylat, vort, area, nlat, planet_radius=EARTH_RADIUS, vgrad=None) assert np.all(np.diff(q_part1) >= 0.) assert q_part1.tolist() == q_part2.tolist() assert vgrad is not None assert vgrad.shape == q_part1.shape
def barotropic_eqlat_lwa(ylat, vort, area, dmu, n_points, planet_radius=6.378e+6): """ Compute equivalent latitude and wave activity on a barotropic sphere. Parameters ---------- ylat : sequence or array_like 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. vort : ndarray 2-d numpy array of vorticity values; dimension = (nlat, nlon). area : ndarray 2-d numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). dmu: sequence or array_like 1-d numpy array of latitudinal differential length element (e.g. dmu = cos(lat) d(lat)). Size = nlat. n_points : int, default None Analysis resolution to calculate equivalent latitude. If input as None, it will be initialized as *nlat*. planet_radius : float, default 6.378e+6 radius of spherical planet of interest consistent with input 'area'. Returns ------- qref : ndarray 1-d numpy array of value Q(y) where latitude y is given by ylat; dimension = (nlat). lwa_result : ndarray 2-d numpy array of local wave activity values; dimension = [nlat_s x nlon] """ from hn2016_falwa import basis nlat = vort.shape[0] nlon = vort.shape[1] if n_points is None: n_points = nlat qref, dummy = basis.eqvlat(ylat, vort, area, n_points, planet_radius=planet_radius) lwa_result, dummy = basis.lwa(nlon, nlat, vort, qref, dmu) return qref, lwa_result
def barotropic_eqlat_lwa(ylat, vort, area, dmu, n_points, planet_radius=6.378e+6): """ Compute equivalent latitude and wave activity on a barotropic sphere. Parameters ---------- ylat : numpy.array 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. vort : numpy.ndarray 2-d numpy array of vorticity values; dimension = (nlat, nlon). area : numpy.ndarray 2-d numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). dmu: numpy.array 1-d numpy array of latitudinal differential length element (e.g. dmu = planet_radius * cos(lat) d(lat)). Size = nlat. n_points : int, default None Analysis resolution to calculate equivalent latitude. If input as None, it will be initialized as *nlat*. planet_radius : float, default 6.378e+6 radius of spherical planet of interest consistent with input 'area'. Returns ------- qref : numpy.array 1-d numpy array of value Q(y) where latitude y is given by ylat; dimension = (nlat). lwa_result : numpy.ndarray 2-d numpy array of local wave activity values; dimension = [nlat_s x nlon] """ from hn2016_falwa import basis nlat = vort.shape[0] nlon = vort.shape[1] if n_points is None: n_points = nlat qref, dummy = basis.eqvlat(ylat, vort, area, n_points, planet_radius=planet_radius) lwa_result, dummy = basis.lwa(nlon, nlat, vort, qref, dmu) return qref, lwa_result
def equivalent_latitudes(self): """ Compute equivalent latitude with the *pv_field* stored in the object. Return ---------- An numpy array with dimension (nlat) of equivalent latitude array. Example ---------- >>> barofield1 = BarotropicField(xlon, ylat, pv_field=abs_vorticity) >>> eqv_lat = barofield1.equivalent_latitudes() """ from hn2016_falwa import basis self.eqvlat, dummy = basis.eqvlat( self.ylat, self.pv_field, self.area, self.n_partitions, planet_radius=self.planet_radius ) return self.eqvlat
def eqvlat_hemispheric(ylat, vort, area, nlat_s=None, n_points=None, planet_radius=6.378e+6): """ Compute equivalent latitude in a hemispheric domain. Parameters ---------- ylat : sequence or array_like 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. vort : ndarray 2-d numpy array of vorticity values; dimension = (nlat, nlon). area : ndarray 2-d numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). nlat_s : int, default None The index of grid point that defines the extent of hemispheric domain from the pole. If input as None, it will be initialize as int(nlat/2). n_points : int, default None Analysis resolution to calculate equivalent latitude. If input as None, it will be initialized as *nlat_s*. planet_radius : float, default 6.378e+6 radius of spherical planet of interest consistent with input 'area'. Returns ------- q_part : ndarray 1-d numpy array of value Q(y) where latitude y is given by ylat; dimension = (nlat). """ from hn2016_falwa import basis nlat = vort.shape[0] qref = np.zeros(nlat) brac = np.zeros(nlat) if nlat_s is None: nlat_s = int(nlat / 2) if n_points is None: n_points = nlat_s # --- Southern Hemisphere --- qref1, dummy = basis.eqvlat(ylat[:nlat_s], vort[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) qref[:nlat_s] = qref1 # --- Northern Hemisphere --- vort2 = -vort[:: -1, :] # Added the minus sign, but gotta see if NL_North is affected qref2, dummy = basis.eqvlat(ylat[:nlat_s], vort2[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) qref[-nlat_s:] = qref2[::-1] return qref
def theta_lwa(ylat, theta, area, dmu, nlat_s=None, n_points=None, planet_radius=6.378e+6): """ Compute the surface wave activity *B* based on surface potential temperature. See Nakamura and Solomon (2010a) for details. Parameters ---------- ylat : sequence or array_like 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. theta : ndarray 2-d numpy array of surface potential temperature field; dimension = (nlat, nlon). area : ndarray 2-d numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). dmu: sequence or array_like 1-d numpy array of latitudinal differential length element (e.g. dmu = cos(lat) d(lat)). Size = nlat. nlat_s : int, default None The index of grid point that defines the extent of hemispheric domain from the pole. If input as None, it will be initialize as int(nlat/2). planet_radius : float, default 6.378e+6 radius of spherical planet of interest consistent with input 'area'. Returns ------- qref : sequence or array_like 1-d numpy array of value reference potential temperature *Theta(y)* approximated by box counting method, where latitude y is given by ylat; dimension = (nlat). lwa_result : ndarray 2-d numpy array of local surface wave activity values; dimension = (nlat, nlon). """ from hn2016_falwa import basis nlat = theta.shape[0] nlon = theta.shape[1] if nlat_s == None: nlat_s = nlat / 2 if n_points == None: n_points = nlat_s qref = np.zeros(nlat) lwa_result = np.zeros((nlat, nlon)) # --- southern Hemisphere --- qref[:nlat_s], brac = basis.eqvlat(ylat[:nlat_s], theta[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) #qref1 = eqvlat(ylat[:nlat_s],theta[:nlat_s,:],area[:nlat_s,:],nlat_s,planet_radius=6.378e+6) # qref[:nlat_s] = qref1 # lwa_south = lwa(nlon,nlat_s,theta[:nlat_s,:],qref1,dmu[:nlat_s]) lwa_result[:nlat_s, :], dummy = basis.lwa(nlon, nlat_s, theta[:nlat_s, :], qref[:nlat_s], dmu[:nlat_s]) # lwa_result[:nlat_s,:] = lwa_south # --- northern Hemisphere --- theta2 = theta[:: -1, :] # Added the minus sign, but gotta see if NL_north is affected # qref2 = eqvlat(ylat[:nlat_s],theta2[:nlat_s,:],area[:nlat_s,:],nlat_s,planet_radius=6.378e+6) qref2, brac = basis.eqvlat(ylat[:nlat_s], theta2[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) qref[-nlat_s:] = qref2[::-1] # lwa_north = lwa(nlon,nlat_s,theta2[:nlat_s,:],qref2,dmu[:nlat_s]) lwa_result[-nlat_s:, :], dummy = basis.lwa(nlon, nlat_s, theta[-nlat_s:, :], qref[-nlat_s:], dmu[-nlat_s:]) # lwa_result[-nlat_s:,:] = lwa_north[::-1,:] return qref, lwa_result
def qgpv_eqlat_lwa_options(ylat, vort, area, dmu, nlat_s=None, n_points=None, vgrad=None, ncforce=None, planet_radius=6.378e+6): """ Compute equivalent latitutde *qref*, local wave activity *lwa_result* and non-conservative force on wave activity *bigsigma_result* based on Quasi- geostrophic potential vorticity field *vort* at a pressure level as outlined in Huang and Nakamura (2017). Parameters ---------- ylat : sequence or array_like 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. vort : ndarray 2-d numpy array of Quasi-geostrophic potential vorticity field; dimension = (nlat, nlon). ncforce: ndarray 2-d numpy array of non-conservative force field (i.e. theta in NZ10(a) in equation (23a) and (23b)); dimension = (nlat, nlon). area : ndarray 2-d numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). dmu: sequence or array_like 1-d numpy array of latitudinal differential length element (e.g. dmu = cos(lat) d(lat)). Size = nlat. nlat_s : int, default None The index of grid point that defines the extent of hemispheric domain from the pole. If input as None, it will be initialize as int(nlat/2). n_points : int, default None Analysis resolution to calculate equivalent latitude. If input as None, it will be initialized as *nlat_s*. planet_radius : float, default 6.378e+6 radius of spherical planet of interest consistent with input 'area'. Returns ------- return_dict : dictionary A dictionary that consist of the 4 computed outputs listed below. (1) qref : ndarray 1-d numpy array of value Q(y) where latitude y is given by ylat; dimension = (nlat). (2) brac_result: ndarray 1-d numpy array of <...>_Q(y) in NZ10 where latitude y is given by ylat; dimension = (nlat). (3) lwa_result : ndarray 2-d numpy array of local wave activity values; dimension = (nlat, nlon). (4) bigsigma_result: ndarray 2-d numpy array of non-conservative force contribution value; dimension = (nlat, nlon). """ from hn2016_falwa import basis nlat = vort.shape[0] nlon = vort.shape[1] if nlat_s is None: nlat_s = int(nlat / 2) if n_points is None: n_points = nlat_s qref = np.zeros(nlat) lwa_result = np.zeros((nlat, nlon)) if ncforce is not None: bigsigma_result = np.zeros((nlat, nlon)) if vgrad is not None: brac_result = np.zeros(nlat) # --- Southern Hemisphere --- if vgrad is None: qref1, brac = basis.eqvlat(ylat[:nlat_s], vort[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) else: qref1, brac = basis.eqvlat(ylat[:nlat_s], vort[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius, vgrad=vgrad[:nlat_s, :]) qref[:nlat_s] = qref1 if vgrad is not None: brac_result[:nlat_s] = brac if ncforce is not None: lwa_result[:nlat_s, :], bigsigma_result[:nlat_s, :] = basis.lwa( nlon, nlat_s, vort[:nlat_s, :], qref1, dmu[:nlat_s], ncforce=ncforce[:nlat_s, :]) else: lwa_result[:nlat_s, :], dummy = basis.lwa(nlon, nlat_s, vort[:nlat_s, :], qref1, dmu[:nlat_s]) # --- Northern Hemisphere --- vort2 = -vort[:: -1, :] # Added the minus sign, but gotta see if NL_North is affected if vgrad is None: qref2, brac = basis.eqvlat(ylat[:nlat_s], vort2[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) else: vgrad2 = -vgrad[::-1, :] # Is this correct? qref2, brac = basis.eqvlat(ylat[:nlat_s], vort2[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius, vgrad=vgrad2[:nlat_s, :]) qref[-nlat_s:] = -qref2[::-1] if vgrad is not None: brac_result[-nlat_s:] = -brac[::-1] if ncforce is not None: lwa_result[-nlat_s:, :], bigsigma_result[-nlat_s:, :] = basis.lwa( nlon, nlat_s, vort[-nlat_s:, :], qref[-nlat_s:], dmu[-nlat_s:], ncforce=ncforce[-nlat_s:, :]) else: lwa_result[-nlat_s:, :], dummy = basis.lwa(nlon, nlat_s, vort[-nlat_s:, :], qref[-nlat_s:], dmu[-nlat_s:]) # Return things as dictionary return_dict = dict() return_dict['qref'] = qref return_dict['lwa_result'] = lwa_result if vgrad is not None: return_dict['brac_result'] = brac_result if ncforce is not None: return_dict['bigsigma_result'] = bigsigma_result return return_dict
def qgpv_eqlat_lwa(ylat, vort, area, dmu, nlat_s=None, n_points=None, planet_radius=6.378e+6): """ Compute equivalent latitutde *qref* and local wave activity *lwa_result* based on Quasi-geostrophic potential vorticity field *vort* at a pressure level as outlined in Huang and Nakamura (2017). Parameters ---------- ylat : sequence or array_like 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. vort : ndarray 2-d numpy array of Quasi-geostrophic potential vorticity field; dimension = (nlat, nlon). area : ndarray 2-d numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). dmu: sequence or array_like 1-d numpy array of latitudinal differential length element (e.g. dmu = cos(lat) d(lat)). Size = nlat. nlat_s : int, default None The index of grid point that defines the extent of hemispheric domain from the pole. If input as None, it will be initialize as int(nlat/2). n_points : int, default None Analysis resolution to calculate equivalent latitude. If input as None, it will be initialized as *nlat_s*. planet_radius : float, default 6.378e+6 radius of spherical planet of interest consistent with input 'area'. Returns ------- qref : ndarray 1-d numpy array of value Q(y) where latitude y is given by ylat; dimension = (nlat). lwa_result : ndarray 2-d numpy array of local wave activity values; dimension = [nlat_s x nlon] """ from hn2016_falwa import basis nlat = vort.shape[0] nlon = vort.shape[1] if nlat_s is None: nlat_s = int(nlat / 2) if n_points is None: n_points = nlat_s qref = np.zeros(nlat) lwa_result = np.zeros((nlat, nlon)) # --- Southern Hemisphere --- qref1, dummy = basis.eqvlat(ylat[:nlat_s], vort[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) qref[:nlat_s] = qref1 lwa_result[:nlat_s, :], dummy = basis.lwa(nlon, nlat_s, vort[:nlat_s, :], qref1, dmu[:nlat_s]) # --- Northern Hemisphere --- vort2 = -vort[:: -1, :] # Added the minus sign, but gotta see if NL_North is affected qref2, dummy = basis.eqvlat(ylat[:nlat_s], vort2[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) qref[-nlat_s:] = -qref2[::-1] lwa_result[-nlat_s:, :], dummy = basis.lwa(nlon, nlat_s, vort[-nlat_s:, :], qref[-nlat_s:], dmu[-nlat_s:]) return qref, lwa_result
def theta_lwa(ylat,theta,area,dmu,nlat_s=None,n_points=None,planet_radius=6.378e+6): """ Compute the surface wave activity *B* based on surface potential temperature. See Nakamura and Solomon (2010a) for details. Parameters ---------- ylat : numpy.array 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. theta : numpy.ndarray 2-d numpy array of surface potential temperature field; dimension = (nlat, nlon). area : numpy.ndarray 2-d numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). dmu: numpy.array 1-d numpy array of latitudinal differential length element (e.g. dmu = planet_radius * cos(lat) d(lat)). Size = nlat. nlat_s : int, default None The index of grid point that defines the extent of hemispheric domain from the pole. If input as None, it will be initialize as nlat // 2. planet_radius : float, default 6.378e+6 radius of spherical planet of interest consistent with input 'area'. Returns ------- qref : numpy.array 1-d numpy array of value reference potential temperature *Theta(y)* approximated by box counting method, where latitude y is given by ylat; dimension = (nlat). lwa_result : numpy.ndarray 2-d numpy array of local surface wave activity values; dimension = (nlat, nlon). """ from hn2016_falwa import basis nlat = theta.shape[0] nlon = theta.shape[1] if nlat_s is None: nlat_s = nlat // 2 if n_points is None: n_points = nlat_s qref = np.zeros(nlat) lwa_result = np.zeros((nlat, nlon)) # --- southern Hemisphere --- qref[:nlat_s], brac = basis.eqvlat(ylat[:nlat_s], theta[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) #qref1 = eqvlat(ylat[:nlat_s],theta[:nlat_s,:],area[:nlat_s,:],nlat_s,planet_radius=6.378e+6) # qref[:nlat_s] = qref1 # lwa_south = lwa(nlon,nlat_s,theta[:nlat_s,:],qref1,dmu[:nlat_s]) lwa_result[:nlat_s, :], dummy = basis.lwa(nlon, nlat_s, theta[:nlat_s, :], qref[:nlat_s], dmu[:nlat_s]) # lwa_result[:nlat_s,:] = lwa_south # --- northern Hemisphere --- theta2 = theta[::-1, :] # Added the minus sign, but gotta see if NL_north is affected # qref2 = eqvlat(ylat[:nlat_s],theta2[:nlat_s,:],area[:nlat_s,:],nlat_s,planet_radius=6.378e+6) qref2, brac = basis.eqvlat(ylat[:nlat_s], theta2[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) qref[-nlat_s:] = qref2[::-1] # lwa_north = lwa(nlon,nlat_s,theta2[:nlat_s,:],qref2,dmu[:nlat_s]) lwa_result[-nlat_s:, :], dummy = basis.lwa(nlon, nlat_s, theta[-nlat_s:, :], qref[-nlat_s:], dmu[-nlat_s:]) # lwa_result[-nlat_s:,:] = lwa_north[::-1,:] return qref, lwa_result
def qgpv_eqlat_lwa_options(ylat, vort, area, dmu, nlat_s=None, n_points=None, vgrad=None, ncforce=None, planet_radius=6.378e+6): """ Compute equivalent latitutde *qref*, local wave activity *lwa_result* and non-conservative force on wave activity *capsigma* based on Quasi- geostrophic potential vorticity field *vort* at a pressure level as outlined in Huang and Nakamura (2017). Parameters ---------- ylat : numpy.array 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. vort : numpy.ndarray 2-d numpy array of Quasi-geostrophic potential vorticity field; dimension = (nlat, nlon). ncforce: numpy.ndarray 2-d numpy array of non-conservative force field (i.e. theta in NZ10(a) in equation (23a) and (23b)); dimension = (nlat, nlon). area : numpy.ndarray 2-d numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). dmu: numpy.array 1-d numpy array of latitudinal differential length element (e.g. dmu = planet_radius * cos(lat) d(lat)). Size = nlat. nlat_s : int, default None The index of grid point that defines the extent of hemispheric domain from the pole. If input as None, it will be initialize as nlat // 2. n_points : int, default None Analysis resolution to calculate equivalent latitude. If input as None, it will be initialized as *nlat_s*. planet_radius : float, default 6.378e+6 radius of spherical planet of interest consistent with input 'area'. Returns ------- return_dict : dictionary A dictionary that consist of the 4 computed outputs listed below. (1) qref : numpy.ndarray 1-d numpy array of value Q(y) where latitude y is given by ylat; dimension = (nlat). (2) brac_result: numpy.ndarray 1-d numpy array of <...>_Q(y) in NZ10 where latitude y is given by ylat; dimension = (nlat). (3) lwa_result : numpy.ndarray 2-d numpy array of local wave activity values; dimension = (nlat, nlon). (4) capsigma: numpy.ndarray 2-d numpy array of non-conservative force contribution value; dimension = (nlat, nlon). """ from hn2016_falwa import basis nlat = vort.shape[0] nlon = vort.shape[1] if nlat_s is None: nlat_s = nlat // 2 if n_points is None: n_points = nlat_s qref = np.zeros(nlat) lwa_result = np.zeros((nlat, nlon)) if ncforce is not None: capsigma = np.zeros((nlat, nlon)) if vgrad is not None: brac_result = np.zeros(nlat) # --- Southern Hemisphere --- if vgrad is None: qref1, brac = basis.eqvlat(ylat[:nlat_s], vort[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) else: qref1, brac = basis.eqvlat(ylat[:nlat_s], vort[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius, vgrad=vgrad[:nlat_s, :]) qref[:nlat_s] = qref1 if vgrad is not None: brac_result[:nlat_s] = brac if ncforce is not None: lwa_result[:nlat_s, :], capsigma[:nlat_s, :] = \ basis.lwa(nlon, nlat_s, vort[:nlat_s, :], qref1, dmu[:nlat_s], ncforce=ncforce[:nlat_s, :]) else: lwa_result[:nlat_s, :], _ = basis.lwa(nlon, nlat_s, vort[:nlat_s, :], qref1, dmu[:nlat_s]) # --- Northern Hemisphere --- vort2 = -vort[::-1, :] # Added the minus sign, but gotta see if NL_North is affected if vgrad is None: qref2, brac = basis.eqvlat(ylat[:nlat_s], vort2[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) else: vgrad2 = -vgrad[::-1, :] # Is this correct? qref2, brac = basis.eqvlat(ylat[:nlat_s], vort2[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius, vgrad=vgrad2[:nlat_s, :]) qref[-nlat_s:] = -qref2[::-1] if vgrad is not None: brac_result[-nlat_s:] = -brac[::-1] if ncforce is not None: lwa_result[-nlat_s:, :], \ capsigma[-nlat_s:, :] = basis.lwa(nlon, nlat_s, vort[-nlat_s:, :], qref[-nlat_s:], dmu[-nlat_s:], ncforce=ncforce[-nlat_s:, :]) else: lwa_result[-nlat_s:, :], _ = basis.lwa(nlon, nlat_s, vort[-nlat_s:, :], qref[-nlat_s:], dmu[-nlat_s:]) # Return things as dictionary return_dict = dict() return_dict['qref'] = qref return_dict['lwa_result'] = lwa_result if vgrad is not None: return_dict['brac_result'] = brac_result if ncforce is not None: return_dict['capsigma'] = capsigma return return_dict
def qgpv_eqlat_lwa(ylat, vort, area, dmu, nlat_s=None, n_points=None, planet_radius=6.378e+6): """ Compute equivalent latitutde *qref* and local wave activity *lwa_result* based on Quasi-geostrophic potential vorticity field *vort* at a pressure level as outlined in Huang and Nakamura (2017). Parameters ---------- ylat : numpy.array 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. vort : numpy.ndarray 2-d numpy array of Quasi-geostrophic potential vorticity field; dimension = (nlat, nlon). area : numpy.ndarray 2-d numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). dmu: numpy.array 1-d numpy array of latitudinal differential length element (e.g. dmu = planet_radius * cos(lat) d(lat)). Size = nlat. nlat_s : int, default None The index of grid point that defines the extent of hemispheric domain from the pole. If input as None, it will be initialize as nlat // 2. n_points : int, default None Analysis resolution to calculate equivalent latitude. If input as None, it will be initialized as *nlat_s*. planet_radius : float, default 6.378e+6 radius of spherical planet of interest consistent with input 'area'. Returns ------- qref : numpy.ndarray 1-d numpy array of value Q(y) where latitude y is given by ylat; dimension = (nlat). lwa_result : numpy.ndarray 2-d numpy array of local wave activity values; dimension = [nlat_s x nlon] """ from hn2016_falwa import basis nlat = vort.shape[0] nlon = vort.shape[1] if nlat_s is None: nlat_s = nlat // 2 if n_points is None: n_points = nlat_s qref = np.zeros(nlat) lwa_result = np.zeros((nlat, nlon)) # --- Southern Hemisphere --- qref1, _ = basis.eqvlat(ylat[:nlat_s], vort[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) qref[:nlat_s] = qref1 lwa_result[:nlat_s, :], _ = basis.lwa(nlon, nlat_s, vort[:nlat_s, :], qref1, dmu[:nlat_s]) # --- Northern Hemisphere --- vort2 = -vort[::-1, :] # Added the minus sign, but gotta see if NL_North is affected qref2, _ = basis.eqvlat(ylat[:nlat_s], vort2[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius) qref[-nlat_s:] = -qref2[::-1] lwa_result[-nlat_s:, :], _ = basis.lwa(nlon, nlat_s, vort[-nlat_s:, :], qref[-nlat_s:], dmu[-nlat_s:]) return qref, lwa_result
def eqvlat_bracket_hemispheric(ylat, vort, area, nlat_s=None, n_points=None, planet_radius=6.378e+6, vgrad=None): """ Compute equivalent latitude and <...>_Q in Nakamura and Zhu (2010) in a hemispheric domain. Parameters ---------- ylat : numpy.array 1-d numpy array of latitude (in degree) with equal spacing in ascending order; dimension = nlat. vort : numpy.ndarray 2-d numpy array of vorticity values; dimension = (nlat, nlon). area : numpy.ndarray 2-d numpy array specifying differential areal element of each grid point; dimension = (nlat, nlon). nlat_s : int, default None The index of grid point that defines the extent of hemispheric domain from the pole. If input as None, it will be initialize as nlat // 2. n_points : int, default None Analysis resolution to calculate equivalent latitude. If input as None, it will be initialized as *nlat_s*. planet_radius : float, default 6.378e+6 radius of spherical planet of interest consistent with input 'area'. vgrad: numpy.ndarray, optional 2-d numpy array of laplacian (or higher-order laplacian) values; dimension = (nlat, nlon) Returns ------- q_part : numpy.ndarray 1-d numpy array of value Q(y) where latitude y is given by ylat; dimension = (nlat). brac : numpy.ndarray or None 1-d numpy array of averaged vgrad in the square bracket. If *vgrad* = None, *brac* = None. """ from hn2016_falwa import basis nlat = vort.shape[0] qref = np.zeros(nlat) brac = np.zeros(nlat) if nlat_s is None: nlat_s = nlat // 2 if n_points is None: n_points = nlat_s # --- Southern Hemisphere --- qref1, brac1 = basis.eqvlat(ylat[:nlat_s], vort[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius, vgrad=vgrad) qref[:nlat_s] = qref1 # --- Northern Hemisphere --- vort2 = -vort[::-1, :] qref2, brac2 = basis.eqvlat(ylat[:nlat_s], vort2[:nlat_s, :], area[:nlat_s, :], n_points, planet_radius=planet_radius, vgrad=vgrad) qref[-nlat_s:] = qref2[::-1] brac[:nlat_s] = brac1 brac[-nlat_s:] = brac2[::-1] return qref, brac