def test_calculate_hologram_noise_sd(self): accumulator = Accumulator() refimg = _load_raw_example_data() paths = get_example_data_path(['bg01.jpg', 'bg02.jpg', 'bg03.jpg']) bg = load_average(paths, refimg) # This value is from the legacy version of load_average self.assertTrue(np.allclose(bg.noise_sd, 0.00709834))
def load_bkg(path, bg_prefix, refimg): subdir = os.path.dirname(path) bkg_paths = [ subdir + '/' + pth for pth in os.listdir(subdir) if bg_prefix in pth] bkg = load_average(bkg_paths, refimg=refimg, channel=RGB_CHANNEL) return bkg
def _load_darkfield(self): if self.darkfield_prefix is not None: names = self._get_filenames_which_contain(self.darkfield_prefix) darkfield = load_average( names, refimg=self._reference_image, channel=RGB_CHANNEL) else: darkfield = None return darkfield
def test_2_colour_noise_sd(self): paths = get_example_data_path([ '2colourbg0.jpg', '2colourbg1.jpg', '2colourbg2.jpg', '2colourbg3.jpg' ]) image = load_average(paths, spacing=1, channel=[0, 1]) gold_noise = [0.06864433355667054, 0.04913377621162473] noise = [ image.noise_sd.loc[colour].item() for colour in ['green', 'red'] ] self.assertTrue(np.allclose(gold_noise, noise))
import holopy as hp from holopy.core.io import get_example_data_path, load_average from holopy.core.process import bg_correct from scipy.ndimage import measurements from holopy.scattering import Spheres from holopy.scattering import calc_holo, Sphere imagepath = get_example_data_path('image01.jpg') raw_holo = hp.load_image( imagepath, spacing=0.0851, medium_index=1.33, illum_wavelen=0.66, ) bgpath = get_example_data_path(['bg01.jpg', 'bg02.jpg', 'bg03.jpg']) bg = load_average(bgpath, refimg=raw_holo) holo = bg_correct(raw_holo, bg) z = [17.5, 20, 27] x = np.linspace(1, 512, 1000) p1 = np.angle(np.e**(-1j * 2 * np.pi * z[0] / (0.66 / 1.33))) p2 = np.angle(np.e**(-1j * 2 * np.pi * z[1] / (0.66 / 1.33))) p3 = np.angle(np.e**(-1j * 2 * np.pi * z[2] / (0.66 / 1.33))) rec_vol1 = hp.propagate(holo, z[0]) rec_vol2 = hp.propagate(holo, z[1]) rec_vol3 = hp.propagate(holo, z[2]) amp1 = np.abs(rec_vol1[:, 253, :]) amp2 = np.abs(rec_vol2[:, 253, :])
def load_bkg(path, bg_prefix, refimg): bkg_paths = get_bkg_paths(path, bg_prefix) bkg = load_average(bkg_paths, refimg=refimg, channel=RGB_CHANNEL) return bkg
import numpy as np import holopy as hp from holopy.core.io import get_example_data_path, load_average from holopy.core.process import bg_correct imagepath = get_example_data_path('image01.jpg') raw_holo = hp.load_image(imagepath, spacing = 0.0851, medium_index = 1.33, illum_wavelen = 0.66, ) bgpath = get_example_data_path(['bg01.jpg','bg02.jpg','bg03.jpg']) bg = load_average(bgpath, refimg = raw_holo) holo = bg_correct(raw_holo, bg) zstack = np.linspace(0, 20, 11) rec_vol = hp.propagate(holo, zstack) hp.show(rec_vol)
def _load_background(self): names = self._get_filenames_which_contain(self.background_prefix) background = load_average( names, refimg=self._reference_image, channel=RGB_CHANNEL) return background