def notebook_extension(*, _inline_js=True): """Enable ipywidgets, holoviews, and asyncio notebook integration.""" if not in_ipynb(): raise RuntimeError('"adaptive.notebook_extension()" may only be run ' 'from a Jupyter notebook.') global _async_enabled, _holoviews_enabled, _ipywidgets_enabled # Load holoviews try: _holoviews_enabled = False # After closing a notebook the js is gone if not _holoviews_enabled: import holoviews holoviews.notebook_extension('bokeh', logo=False, inline=_inline_js) _holoviews_enabled = True except ModuleNotFoundError: warnings.warn("holoviews is not installed; plotting " "is disabled.", RuntimeWarning) # Load ipywidgets try: if not _ipywidgets_enabled: import ipywidgets _ipywidgets_enabled = True except ModuleNotFoundError: warnings.warn("ipywidgets is not installed; live_info " "is disabled.", RuntimeWarning) # Enable asyncio integration if not _async_enabled: get_ipython().magic('gui asyncio') _async_enabled = True
def init_notebook(mpl=True): # Enable inline plotting in the notebook if mpl: try: get_ipython().enable_matplotlib(gui='inline') except NameError: pass print('Populated the namespace with:\n' + ', '.join(init_mooc_nb) + '\nfrom code/edx_components:\n' + ', '.join(edx_components.__all__) + '\nfrom code/functions:\n' + ', '.join(functions.__all__)) holoviews.notebook_extension('matplotlib') Store.renderers['matplotlib'].fig = 'svg' holoviews.plotting.mpl.MPLPlot.fig_rcparams['text.usetex'] = True latex_packs = [r'\usepackage{amsmath}', r'\usepackage{amssymb}' r'\usepackage{bm}'] holoviews.plotting.mpl.MPLPlot.fig_rcparams['text.latex.preamble'] = latex_packs # Set plot style. options = Store.options(backend='matplotlib') options.Contours = Options('style', linewidth=2, color='k') options.Contours = Options('plot', aspect='square') options.HLine = Options('style', linestyle='--', color='b', linewidth=2) options.VLine = Options('style', linestyle='--', color='r', linewidth=2) options.Image = Options('style', cmap='RdBu_r') options.Image = Options('plot', title_format='{label}') options.Path = Options('style', linewidth=1.2, color='k') options.Path = Options('plot', aspect='square', title_format='{label}') options.Curve = Options('style', linewidth=2, color='k') options.Curve = Options('plot', aspect='square', title_format='{label}') options.Overlay = Options('plot', show_legend=False, title_format='{label}') options.Layout = Options('plot', title_format='{label}') options.Surface = Options('style', cmap='RdBu_r', rstride=1, cstride=1, lw=0.2) options.Surface = Options('plot', azimuth=20, elevation=8) # Turn off a bogus holoviews warning. # Temporary solution to ignore the warnings warnings.filterwarnings('ignore', r'All-NaN (slice|axis) encountered') module_dir = os.path.dirname(__file__) matplotlib.rc_file(os.path.join(module_dir, "matplotlibrc")) np.set_printoptions(precision=2, suppress=True, formatter={'complexfloat': pretty_fmt_complex}) # Patch a bug in holoviews if holoviews.__version__.release <= (1, 4, 3): from patch_holoviews import patch_all patch_all()
def setUp(self): notebook_extension(*BACKENDS) Store.current_backend = 'matplotlib' Store.renderers['matplotlib'] = mpl.MPLRenderer.instance() if bokeh: Store.renderers['bokeh'] = bokeh.BokehRenderer.instance() OutputSettings.options = OrderedDict(OutputSettings.defaults.items()) super(TestOutputUtil, self).setUp()
def init_notebook(): # Enable inline plotting in the notebook try: get_ipython().enable_matplotlib(gui='inline') except NameError: pass print('Populated the namespace with:\n' + ', '.join(__all__)) holoviews.notebook_extension('matplotlib') holoviews.plotting.mpl.MPLPlot.fig_rcparams['text.usetex'] = True # Set plot style. options = Store.options(backend='matplotlib') options.Contours = Options('style', linewidth=2, color='k') options.Contours = Options('plot', aspect='square') options.HLine = Options('style', linestyle='--', color='b', linewidth=2) options.VLine = Options('style', linestyle='--', color='r', linewidth=2) options.Image = Options('style', cmap='RdBu_r') options.Image = Options('plot', title_format='{label}') options.Path = Options('style', linewidth=1.2, color='k') options.Path = Options('plot', aspect='square', title_format='{label}') options.Curve = Options('style', linewidth=2, color='k') options.Curve = Options('plot', aspect='square', title_format='{label}') options.Overlay = Options('plot', show_legend=False, title_format='{label}') options.Layout = Options('plot', title_format='{label}') options.Surface = Options('style', cmap='RdBu_r', rstride=1, cstride=1, lw=0.2) options.Surface = Options('plot', azimuth=20, elevation=8) # Turn off a bogus holoviews warning. # Temporary solution to ignore the warnings warnings.filterwarnings('ignore', r'All-NaN (slice|axis) encountered') module_dir = os.path.dirname(__file__) matplotlib.rc_file(os.path.join(module_dir, "matplotlibrc")) np.set_printoptions(precision=2, suppress=True, formatter={'complexfloat': pretty_fmt_complex}) # In order to make the notebooks readable through nbviewer we want to hide # the code by default. However the same code is executed by the students, # and in that case we don't want to hide the code. So we check if the code # is executed by one of the mooc developers. Here we do by simply checking # for some files that belong to the internal mooc repository, but are not # published. This is a temporary solution, and should be improved in the # long run. developer = os.path.exists(os.path.join(module_dir, os.path.pardir, 'scripts')) display_html(display.HTML(nb_html_header + (hide_outside_ipython if developer else ''))) # Patch a bug in holoviews from patch_holoviews import patch_all patch_all()
def init_notebook(): print_information() check_versions() code_dir = os.path.dirname(os.path.realpath(__file__)) hv_css = os.path.join(code_dir, 'hv_widgets_settings.css') holoviews.plotting.widgets.SelectionWidget.css = hv_css holoviews.notebook_extension('matplotlib') # Enable inline plotting in the notebook get_ipython().enable_matplotlib(gui='inline') Store.renderers['matplotlib'].fig = 'svg' Store.renderers['matplotlib'].dpi = 100 holoviews.plotting.mpl.MPLPlot.fig_rcparams['text.usetex'] = True latex_packs = [r'\usepackage{amsmath}', r'\usepackage{amssymb}' r'\usepackage{bm}'] holoviews.plotting.mpl.MPLPlot.fig_rcparams['text.latex.preamble'] = \ latex_packs # Set plot style. options = Store.options(backend='matplotlib') options.Contours = Options('style', linewidth=2, color='k') options.Contours = Options('plot', aspect='square') options.HLine = Options('style', linestyle='--', color='b', linewidth=2) options.VLine = Options('style', linestyle='--', color='r', linewidth=2) options.Image = Options('style', cmap='RdBu_r') options.Image = Options('plot', title_format='{label}') options.Path = Options('style', linewidth=1.2, color='k') options.Path = Options('plot', aspect='square', title_format='{label}') options.Curve = Options('style', linewidth=2, color='k') options.Curve = Options('plot', aspect='square', title_format='{label}') options.Overlay = Options('plot', show_legend=False, title_format='{label}') options.Layout = Options('plot', title_format='{label}') options.Surface = Options('style', cmap='RdBu_r', rstride=2, cstride=2, lw=0.2, edgecolors='k') options.Surface = Options('plot', azimuth=20, elevation=8) # Set slider label formatting for dimension_type in [float, np.float64, np.float32]: holoviews.Dimension.type_formatters[dimension_type] = pretty_fmt_complex matplotlib.rc_file(os.path.join(code_dir, "matplotlibrc")) np.set_printoptions(precision=2, suppress=True, formatter={'complexfloat': pretty_fmt_complex})
def manage_display_import(): global MPLRenderer import matplotlib as mpl if os.environ.get('DISPLAY', '') == '': log.info('no display found. Using non-interactive Agg backend') with warnings.catch_warnings(): warnings.simplefilter("ignore") mpl.use('Agg') from holoviews.plotting.mpl import MPLRenderer # noqa if is_interactive(): from holoviews import notebook_extension notebook_extension("bokeh")
def notebook_extension(): get_ipython().magic('gui asyncio') try: import holoviews as hv return hv.notebook_extension('bokeh') except ModuleNotFoundError: warnings.warn( "The holoviews package is not installed so plotting" "will not work.", RuntimeWarning)
def notebook_extension(): if not in_ipynb(): raise RuntimeError('"adaptive.notebook_extension()" may only be run ' 'from a Jupyter notebook.') global _plotting_enabled _plotting_enabled = False try: import ipywidgets import holoviews holoviews.notebook_extension('bokeh') _plotting_enabled = True except ModuleNotFoundError: warnings.warn("holoviews and (or) ipywidgets are not installed; plotting " "is disabled.", RuntimeWarning) global _async_enabled get_ipython().magic('gui asyncio') _async_enabled = True
def interactive_crop( video_path, frame=0, ): """ Loads and displays a frame for a video to be used for cropping. Cropping automatically updated using holoviews stream object. Args: video_path (str): Path to the video frame (int): The index of the frame to be used for cropping Returns: image, stream """ hv.notebook_extension("bokeh") cap = cv2.VideoCapture(video_path) cap.set(cv2.CAP_PROP_POS_FRAMES, frame) _, frame = cap.read() print(frame.shape) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # frame = frame[::-1, :] # inverse y axis for plotting cap.release() image = hv.Image( (np.arange(frame.shape[1]), np.arange(frame.shape[0]), frame)) image.opts( width=frame.shape[1], height=frame.shape[0], cmap="gray", colorbar=True, toolbar="below", title="First Frame. Crop if Desired", ) box = hv.Polygons([]) box.opts(alpha=0.5) box_stream = streams.BoxEdit(source=box, num_objects=1) return (image * box), box_stream
import os import sys sys.path.insert(0, os.path.abspath('..')) # to get adaptive on the path import adaptive import holoviews import matplotlib.pyplot as plt import matplotlib.tri as mtri from PIL import Image, ImageDraw holoviews.notebook_extension('matplotlib') def create_and_run_learner(): def ring(xy): import numpy as np x, y = xy a = 0.2 return x + np.exp(-(x**2 + y**2 - 0.75**2)**2/a**4) learner = adaptive.Learner2D(ring, bounds=[(-1, 1), (-1, 1)]) adaptive.runner.simple(learner, goal=lambda l: l.loss() < 0.01) return learner def plot_learner_and_save(learner, fname): fig, ax = plt.subplots() tri = learner.ip().tri triang = mtri.Triangulation(*tri.points.T, triangles=tri.vertices) ax.triplot(triang, c='k', lw=0.8) ax.imshow(learner.plot().Image.I.data, extent=(-0.5, 0.5, -0.5, 0.5))
import collections import threading from concurrent.futures import ThreadPoolExecutor import warnings import glob import os import numpy as np import pandas as pd import matplotlib.pyplot as plt # noqa: F401 import matplotlib.cbook import holoviews as hv from holoviews import opts hv.extension("bokeh") hv.notebook_extension(width=90) # For showing wide plots # Get rid of matplotlib deprecation warnings. warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation) # + def load_config(path: str) -> typing.Dict: """Loads run metadata.""" with open(f"{path}/meta.json", "r") as f: try: config = json.load(f) return config except Exception as e: # noqa: F841 print(f"Error parsing {path}")
# coding: utf-8 # # System of 2 particles # In[2]: import numpy as np import scipy.linalg as la import matplotlib.pyplot as plt import holoviews as hv hv.notebook_extension('matplotlib') get_ipython().magic('matplotlib inline') # In[3]: m = 1 #particle mass n = 2 #number of particles h = .01 #time step L = 100 #box size eps = 1 sigma = 0.01 # In[73]: pos0 = np.random.rand(n, 2) # one particle each row: [x y ] print(pos0) vel0 = np.array([[1, 1], [-2, -1]]) #one particle each row: [px py] mom0 = m * vel0 print(mom0, vel0)
def init_notebook(mpl=True): # Enable inline plotting in the notebook if mpl: try: get_ipython().enable_matplotlib(gui='inline') except NameError: pass print('Populated the namespace with:\n' + ', '.join(init_mooc_nb) + '\nfrom code/edx_components:\n' + ', '.join(edx_components.__all__) + '\nfrom code/functions:\n' + ', '.join(functions.__all__)) holoviews.notebook_extension('matplotlib') Store.renderers['matplotlib'].fig = 'svg' holoviews.plotting.mpl.MPLPlot.fig_rcparams['text.usetex'] = True latex_packs = [ r'\usepackage{amsmath}', r'\usepackage{amssymb}' r'\usepackage{bm}' ] holoviews.plotting.mpl.MPLPlot.fig_rcparams[ 'text.latex.preamble'] = latex_packs # Set plot style. options = Store.options(backend='matplotlib') options.Contours = Options('style', linewidth=2, color='k') options.Contours = Options('plot', aspect='square') options.HLine = Options('style', linestyle='--', color='b', linewidth=2) options.VLine = Options('style', linestyle='--', color='r', linewidth=2) options.Image = Options('style', cmap='RdBu_r') options.Image = Options('plot', title_format='{label}') options.Path = Options('style', linewidth=1.2, color='k') options.Path = Options('plot', aspect='square', title_format='{label}') options.Curve = Options('style', linewidth=2, color='k') options.Curve = Options('plot', aspect='square', title_format='{label}') options.Overlay = Options('plot', show_legend=False, title_format='{label}') options.Layout = Options('plot', title_format='{label}') options.Surface = Options('style', cmap='RdBu_r', rstride=1, cstride=1, lw=0.2) options.Surface = Options('plot', azimuth=20, elevation=8) # Turn off a bogus holoviews warning. # Temporary solution to ignore the warnings warnings.filterwarnings('ignore', r'All-NaN (slice|axis) encountered') module_dir = os.path.dirname(__file__) matplotlib.rc_file(os.path.join(module_dir, "matplotlibrc")) np.set_printoptions(precision=2, suppress=True, formatter={'complexfloat': pretty_fmt_complex}) # Patch a bug in holoviews if holoviews.__version__.release <= (1, 4, 3): from patch_holoviews import patch_all patch_all()
from holoviews import notebook_extension from holoviews.element.comparison import ComparisonTestCase from holoviews import Store from holoviews.util import output, opts, OutputSettings from holoviews.core import OrderedDict from holoviews.core.options import OptionTree from holoviews.plotting import mpl try: from holoviews.plotting import bokeh except: bokeh = None BACKENDS = ['matplotlib'] + (['bokeh'] if bokeh else []) notebook_extension(*BACKENDS) class TestOutputUtil(ComparisonTestCase): def setUp(self): Store.current_backend = 'matplotlib' Store.renderers['matplotlib'] = mpl.MPLRenderer.instance() if bokeh: Store.renderers['bokeh'] = bokeh.BokehRenderer.instance() OutputSettings.options = OrderedDict(OutputSettings.defaults.items()) super(TestOutputUtil, self).setUp() def tearDown(self): Store.renderers['matplotlib'] = mpl.MPLRenderer.instance()
def init_notebook(): print_information() check_versions() holoviews.notebook_extension("matplotlib") holoviews.output(widget_location='bottom') # Enable inline plotting in the notebook get_ipython().enable_matplotlib(gui="inline") Store.renderers["matplotlib"].fig = "svg" Store.renderers["matplotlib"].dpi = 100 holoviews.plotting.mpl.MPLPlot.fig_rcparams["text.usetex"] = False latex_packs = [ r"\usepackage{amsmath}", r"\usepackage{amssymb}" r"\usepackage{bm}" ] holoviews.plotting.mpl.MPLPlot.fig_rcparams[ "text.latex.preamble"] = latex_packs # Set plot style. options = Store.options(backend="matplotlib") options.Contours = Options("style", linewidth=2, color="k") options.Contours = Options("plot", padding=0, aspect="square") options.HLine = Options("style", linestyle="--", color="b", linewidth=2) options.VLine = Options("style", linestyle="--", color="r", linewidth=2) options.Image = Options("style", cmap="RdBu_r") options.Image = Options("plot", padding=0, title="{label}") options.Path = Options("style", linewidth=1.2, color="black") options.Path = Options("plot", padding=0, aspect="square", title="{label}") options.Curve = Options("style", linewidth=2, color="black") options.Curve = Options("plot", padding=0, aspect="square", title="{label}") options.Overlay = Options("plot", padding=0, show_legend=False, title="{label}") options.Layout = Options("plot", title="{label}") options.Surface = Options("style", cmap="RdBu_r", rstride=2, cstride=2, lw=0.2, edgecolor="black") options.Surface = Options("plot", azimuth=20, elevation=8) # Set slider label formatting for dimension_type in [float, np.float64, np.float32]: holoviews.Dimension.type_formatters[ dimension_type] = lambda x: pretty_fmt_complex(x, 4) code_dir = os.path.dirname(os.path.realpath(__file__)) matplotlib.rc_file(os.path.join(code_dir, "matplotlibrc")) np.set_printoptions(precision=2, suppress=True, formatter={"complexfloat": pretty_fmt_complex}) # Silence Kwant warnings from color scale overflow warnings.filterwarnings("ignore", category=RuntimeWarning, message="The plotted data contains")
import os import subprocess from parfile import * # display # (M2,P) # (3,4) | (3,8) | (3,12) # (2,4) | (2,8) | (2,12) # (1,4) | (1,8) | (1,12) # => M2[i//3] and P[i%3] # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - hv.notebook_extension("matplotlib") # x = np.arange(0, np.pi, 0.1) # y = np.arange(0, 2*np.pi, 0.1) # X, Y = np.meshgrid(x, y) # Z = np.cos(X) * np.sin(Y) * 10 # colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)] # R -> G -> B # n_bins = [4, 6, 10, 100] # Discretizes the interpolation into bins # cmap_name = 'my_list' # # fig, ax = plt.subplots(1, 1, figsize=(6, 6)) # vmax=25 # cm = LinearSegmentedColormap.from_list(cmap_name, [(0, 'blue'), # (0.2/vmax, 'red'), # (0.6/vmax, 'green'), # (2./vmax, 'black'), # (6./vmax, 'yellow'),
def init_notebook(): # Enable inline plotting in the notebook try: get_ipython().enable_matplotlib(gui='inline') except NameError: pass print('Populated the namespace with:\n' + ', '.join(init_mooc_nb) + '\nfrom code/edx_components:\n' + ', '.join(edx_components.__all__) + '\nfrom code/functions:\n' + ', '.join(functions.__all__)) holoviews.notebook_extension('matplotlib') holoviews.plotting.mpl.MPLPlot.fig_rcparams['text.usetex'] = True # Set plot style. options = Store.options(backend='matplotlib') options.Contours = Options('style', linewidth=2, color='k') options.Contours = Options('plot', aspect='square') options.HLine = Options('style', linestyle='--', color='b', linewidth=2) options.VLine = Options('style', linestyle='--', color='r', linewidth=2) options.Image = Options('style', cmap='RdBu_r') options.Image = Options('plot', title_format='{label}') options.Path = Options('style', linewidth=1.2, color='k') options.Path = Options('plot', aspect='square', title_format='{label}') options.Curve = Options('style', linewidth=2, color='k') options.Curve = Options('plot', aspect='square', title_format='{label}') options.Overlay = Options('plot', show_legend=False, title_format='{label}') options.Layout = Options('plot', title_format='{label}') options.Surface = Options('style', cmap='RdBu_r', rstride=1, cstride=1, lw=0.2) options.Surface = Options('plot', azimuth=20, elevation=8) # Turn off a bogus holoviews warning. # Temporary solution to ignore the warnings warnings.filterwarnings('ignore', r'All-NaN (slice|axis) encountered') module_dir = os.path.dirname(__file__) matplotlib.rc_file(os.path.join(module_dir, "matplotlibrc")) np.set_printoptions(precision=2, suppress=True, formatter={'complexfloat': pretty_fmt_complex}) # In order to make the notebooks readable through nbviewer we want to hide # the code by default. However the same code is executed by the students, # and in that case we don't want to hide the code. So we check if the code # is executed by one of the mooc developers. Here we do by simply checking # for some files that belong to the internal mooc repository, but are not # published. This is a temporary solution, and should be improved in the # long run. developer = os.path.exists( os.path.join(module_dir, os.path.pardir, 'scripts')) display_html( display.HTML(nb_html_header + (hide_outside_ipython if developer else ''))) # Patch a bug in holoviews from patch_holoviews import patch_all patch_all()
def init_imports(): """Initialize speedups and bokeh""" speedups.enable() hv.notebook_extension('bokeh')
import numpy as np from netCDF4 import Dataset import time import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from ipyleaflet import Map, ImageOverlay, Marker, TileLayer import os from pyproj import Proj, transform import holoviews as hv hv.notebook_extension() class OLCIprocessing: def __init__(self, ProductName, OutputName=True): '''ProductName; contains the path to the Sentinel-3 product that is being processed/of interest. OutputName; will be the name of the later on generated png file. If set to True, this function will set this variable to 'S3A_' followed by the date and time of the products retrieval.''' self.prodName = ProductName if OutputName == True: self.out = self.prodName[44:47] + '_' + self.prodName[60:75] else: self.out = OutputName def importNetCDF(self, NumBand=21): ''' This function imports the variables (radiance and coordinates) of a Sentinel-3 OLCI EFR Product NumBand; The number of bands that want to be imported. Currently just increasing band numbers are supported, i.e. if NumBand is set to 13, the band Oa01 - Oa13 are imported. Note: CalcRGB method requires the first 10 bands. '''
import os import sys import holoviews import matplotlib.pyplot as plt import matplotlib.tri as mtri from PIL import Image, ImageDraw sys.path.insert(0, os.path.abspath("..")) # to get adaptive on the path import adaptive # noqa: E402, isort:skip holoviews.notebook_extension("matplotlib") def create_and_run_learner(): def ring(xy): import numpy as np x, y = xy a = 0.2 return x + np.exp(-((x**2 + y**2 - 0.75**2)**2) / a**4) learner = adaptive.Learner2D(ring, bounds=[(-1, 1), (-1, 1)]) adaptive.runner.simple(learner, goal=lambda l: l.loss() < 0.01) return learner def plot_learner_and_save(learner, fname): fig, ax = plt.subplots() tri = learner.interpolator(scaled=True).tri
sys.path.append(minian_path) import itertools as itt import numpy as np import xarray as xr import holoviews as hv import pandas as pd from holoviews.operation.datashader import datashade, regrid from minian.cross_registration import (calculate_centroids, calculate_centroid_distance, calculate_mapping, group_by_session, resolve_mapping, fill_mapping) from minian.motion_correction import estimate_shifts, apply_shifts from minian.utilities import open_minian, open_minian_mf from minian.visualization import AlignViewer hv.notebook_extension('bokeh', width=100) # # Allign Videos # ## open datasets # In[4]: minian_ds = open_minian_mf(dpath, id_dims, pattern=f_pattern, backend='zarr') # ## estimate shifts # In[5]: temps = minian_ds['Y'].max('frame').compute().rename('temps') shifts = estimate_shifts(temps, max_sh=param_t_dist, dim='session').compute()
from holoviews import notebook_extension from holoviews.element.comparison import ComparisonTestCase from holoviews import Store from holoviews.util import output, opts, OutputSettings from holoviews.core import OrderedDict from holoviews.core.options import OptionTree from holoviews.plotting import mpl try: from holoviews.plotting import bokeh except: bokeh = None BACKENDS = ['matplotlib'] + (['bokeh'] if bokeh else []) notebook_extension(*BACKENDS) class TestOutputUtil(ComparisonTestCase): def setUp(self): Store.current_backend = 'matplotlib' Store.renderers['matplotlib'] = mpl.MPLRenderer.instance() if bokeh: Store.renderers['bokeh'] = bokeh.BokehRenderer.instance() OutputSettings.options = OrderedDict(OutputSettings.defaults.items()) super(TestOutputUtil, self).setUp() def tearDown(self): Store.renderers['matplotlib'] = mpl.MPLRenderer.instance() if bokeh:
import pandas as pd import holoviews as hv import geoviews as gv import geoviews.feature as gf import geoviews.tile_sources as gts import geopandas from bokeh.palettes import YlOrBr3 as palette import cartopy from cartopy import crs as ccrs from bokeh.tile_providers import STAMEN_TONER from bokeh.models import WMTSTileSource hv.notebook_extension('bokeh') DATA_PATH = "data/" MAP_PATH = DATA_PATH + "world.geo.json/countries/" COUNTRY_CODE_DATA = DATA_PATH + "country-codes/data/country-codes.csv" try: from_day = int(sys.argv[1]) to_day = int(sys.argv[2]) out_name = "./results/" + str(from_day) + "to" + str(to_day) except: print("Arguemnts should be like :") print("python scraper.py 'From' 'to'") def isNaN(num): return num != num
import numpy as np import holoviews as hv hv.notebook_extension("bokeh") xs = np.linspace(0,np.pi*4,100) data = (xs,np.sin(xs)) hv.Curve(data)