def __init__(self, in_channels, out_channels, use_se): super().__init__() assert out_channels % 2 == 0 channels = out_channels // 2 self.branch1 = DWConv2d(in_channels, channels, kernel_size=3, stride=2, norm='default', act='default') branch2 = [ Conv2d(in_channels, channels, kernel_size=1, act='default', norm='default'), DWConv2d(channels, channels, kernel_size=3, stride=2, norm='default', act='default'), ] if use_se: branch2.append(SELayer(channels, reduction=2)) self.branch2 = nn.Sequential(*branch2)
def __init__(self, in_channels, out_channels, kernel_size, activation, use_se): super().__init__() assert kernel_size in [3, 5, 7] mid_channels = out_channels // 2 output = out_channels - in_channels branch_main = [ Conv2d(in_channels, mid_channels, kernel_size=1, norm='default', act=activation), DWConv2d(mid_channels, output, kernel_size=kernel_size, stride=2, norm='default', act=activation), ] if use_se: branch_main.append(SELayer(output, reduction=2)) self.branch_main = nn.Sequential(*branch_main) self.branch_proj = DWConv2d(in_channels, in_channels, kernel_size=kernel_size, stride=2, norm='default', act=activation)
def __init__(self, in_channels, activation, use_se): super().__init__() channels = in_channels // 2 branch = [ DWConv2d(channels, channels, kernel_size=3, norm_layer='default', activation=activation), DWConv2d(channels, channels, kernel_size=3, norm_layer='default', activation=activation), DWConv2d(channels, channels, kernel_size=3, norm_layer='default', activation=activation), ] if use_se: branch.append(SELayer(channels, reduction=2)) self.branch = nn.Sequential(*branch)
def __init__(self, num_anchors, num_classes=2, in_channels=245, f_channels=256): super().__init__() self.num_classes = num_classes self.conv = DWConv2d( in_channels, f_channels, kernel_size=5, norm='default', act='default') self.loc_conv = Conv2d( f_channels, num_anchors * 4, kernel_size=1) self.cls_conv = Conv2d( f_channels, num_anchors * num_classes, kernel_size=1) bias_init_constant(self.cls_conv, inverse_sigmoid(0.01))
def __init__(self, in_channels, use_se): super().__init__() assert in_channels % 2 == 0 channels = in_channels // 2 branch = [ Conv2d(channels, channels, kernel_size=1, norm='default', act='default'), DWConv2d(channels, channels, kernel_size=3, norm='default', act='default'), ] if use_se: branch.append(SELayer(channels, reduction=2)) self.branch = nn.Sequential(*branch)
def __init__(self, in_channels, kernel_size, activation, use_se): super().__init__() assert kernel_size in [3, 5, 7] channels = in_channels // 2 branch = [ Conv2d(channels, channels, kernel_size=1, norm='default', act=activation), DWConv2d(channels, channels, kernel_size=kernel_size, norm='default', act=activation), ] if use_se: branch.append(SELayer(channels, reduction=2)) self.branch = nn.Sequential(*branch)