def allreduce(tensor, average=True, device_dense='', device_sparse=''): """Perform an allreduce on a tf.Tensor or tf.IndexedSlices. Arguments: tensor: tf.Tensor, tf.Variable, or tf.IndexedSlices to reduce. The shape of the input must be identical across all ranks. average: If True, computes the average over all ranks. Otherwise, computes the sum over all ranks. device_dense: Device to be used for dense tensors. Uses GPU by default if Horovod was build with HOROVOD_GPU_ALLREDUCE. device_sparse: Device to be used for sparse tensors. Uses GPU by default if Horovod was build with HOROVOD_GPU_ALLGATHER. This function performs a bandwidth-optimal ring allreduce on the input tensor. If the input is an tf.IndexedSlices, the function instead does an allgather on the values and the indices, effectively doing an allreduce on the represented tensor. """ if isinstance(tensor, tf.IndexedSlices): with tf.device(device_sparse): # For IndexedSlices, do two allgathers intead of an allreduce. horovod_size = tf.cast(size(), tensor.values.dtype) values = allgather(tensor.values) indices = allgather(tensor.indices) # To make this operation into an average, divide all gathered values by # the Horovod size. new_values = tf.div(values, horovod_size) if average else values return tf.IndexedSlices(new_values, indices, dense_shape=tensor.dense_shape) else: with tf.device(device_dense): horovod_size = tf.cast(size(), tensor.dtype) summed_tensor = _allreduce(tensor) new_tensor = (tf.div(summed_tensor, horovod_size) if average else summed_tensor) return new_tensor
def grouped_allreduce(tensors, average=None, device_dense='', device_sparse='', compression=Compression.none, op=None, prescale_factor=1.0, postscale_factor=1.0, process_set=global_process_set): if not tensors: return tensors op = handle_average_backwards_compatibility(op, average) average_in_framework = False if rocm_built(): # For ROCm, perform averaging at framework level average_in_framework = op == Average or op == Adasum op = Sum if op == Average else op if any(isinstance(t, tf.IndexedSlices) for t in tensors): # TODO: Need to fix this to actuall call Adasum if op == Adasum: raise NotImplementedError( 'The Adasum reduction does not currently support sparse tensors. As a ' 'workaround please pass sparse_as_dense=True to DistributedOptimizer' ) with tf.device(device_sparse): new_values = [] for tensor in tensors: # For IndexedSlices, do two allgathers instead of an allreduce. horovod_size = tf.cast( size_op(process_set_id=process_set.process_set_id) if int( os.environ.get("HOROVOD_ELASTIC", 0)) else process_set.size(), dtype=tensor.values.dtype) values = allgather(tensor.values, process_set=process_set) indices = allgather(tensor.indices, process_set=process_set) # To make this operation into an average, divide allgathered values by # the Horovod size. new_values += (values / horovod_size) if op == Average else values return [ tf.IndexedSlices(x, indices, dense_shape=t.dense_shape) for x, t in zip(new_values, tensors) ] else: with tf.device(device_dense): tensors_compressed, ctxs = zip( *[compression.compress(tensor) for tensor in tensors]) summed_tensors_compressed = _grouped_allreduce( tensors_compressed, op=op, prescale_factor=prescale_factor, postscale_factor=postscale_factor, process_set=process_set) summed_tensors = [ compression.decompress(t, ctx) for t, ctx in zip(summed_tensors_compressed, ctxs) ] if op == Adasum: if process_set != global_process_set: raise NotImplementedError( "Adasum does not support non-global process sets yet.") if 'CPU' not in tensor.device and gpu_available('tensorflow'): if nccl_built(): if not is_homogeneous: raise NotImplementedError( 'Running GPU Adasum on heterogeneous cluster is not supported yet.' ) elif not check_num_rank_power_of_2( int(size() / local_size())): raise NotImplementedError( 'Running GPU Adasum with non-power of 2 nodes is not supported yet.' ) if rocm_built(): new_tensors = [] for tensor in summed_tensors: horovod_local_size = tf.cast( local_size_op() if int( os.environ.get("HOROVOD_ELASTIC", 0)) else local_size(), dtype=tensor.dtype) new_tensors += tensor / horovod_local_size else: new_tensors = summed_tensors else: warnings.warn( 'Adasum reduction does not currently support GPU reduction using MPI. Tensors ' 'are copied to CPU memory instead. To use Adasum for GPU reduction, please ' 'compile Horovod with HOROVOD_GPU_OPERATIONS=NCCL.' ) new_tensors = summed_tensors else: if not check_num_rank_power_of_2(size()): raise NotImplementedError( 'Running Adasum with non-power of 2 ranks is not supported yet.' ) new_tensors = summed_tensors else: if rocm_built(): new_tensors = [] for tensor in summed_tensors: horovod_size = tf.cast( size_op(process_set_id=process_set.process_set_id) if int(os.environ.get("HOROVOD_ELASTIC", 0)) else process_set.size(), dtype=tensor.dtype) new_tensors += ( tensor / horovod_size) if average_in_framework else tensor else: new_tensors = summed_tensors return new_tensors
def allreduce(tensor, average=None, device_dense='', device_sparse='', compression=Compression.none, op=None): """Perform an allreduce on a tf.Tensor or tf.IndexedSlices. This function performs a bandwidth-optimal ring allreduce on the input tensor. If the input is an tf.IndexedSlices, the function instead does an allgather on the values and the indices, effectively doing an allreduce on the represented tensor. Arguments: tensor: tf.Tensor, tf.Variable, or tf.IndexedSlices to reduce. The shape of the input must be identical across all ranks. average: .. warning:: .. deprecated:: 0.19.0 Use `op` instead. Will be removed in v0.21.0. device_dense: Device to be used for dense tensors. Uses GPU by default if Horovod was built with HOROVOD_GPU_OPERATIONS. device_sparse: Device to be used for sparse tensors. Uses GPU by default if Horovod was built with HOROVOD_GPU_OPERATIONS. compression: Compression algorithm used to reduce the amount of data sent and received by each worker node. Defaults to not using compression. op: The reduction operation to combine tensors across different ranks. Defaults to Average if None is given. Returns: A tensor of the same shape and type as `tensor`, summed across all processes. """ op = handle_average_backwards_compatibility(op, average) # Averaging happens in framework code, so translate that to Sum for the actual call true_op = Sum if op == Average else op if isinstance(tensor, tf.IndexedSlices): # TODO: Need to fix this to actuall call Adasum if op == Adasum: raise NotImplementedError( 'The Adasum reduction does not currently support sparse tensors. As a ' 'workaround please pass sparse_as_dense=True to DistributedOptimizer' ) with tf.device(device_sparse): # For IndexedSlices, do two allgathers instead of an allreduce. horovod_size = tf.cast(size(), dtype=tensor.values.dtype) values = allgather(tensor.values) indices = allgather(tensor.indices) # To make this operation into an average, divide allgathered values by # the Horovod size. new_values = (values / horovod_size) if op == Average else values return tf.IndexedSlices(new_values, indices, dense_shape=tensor.dense_shape) else: with tf.device(device_dense): horovod_size = tf.cast(size(), dtype=tensor.dtype) tensor_compressed, ctx = compression.compress(tensor) summed_tensor_compressed = _allreduce(tensor_compressed, op=true_op) summed_tensor = compression.decompress(summed_tensor_compressed, ctx) if op == Adasum: if 'CPU' not in tensor.device and gpu_available('tensorflow'): if nccl_built(): if not is_homogeneous: raise NotImplementedError( 'Running GPU Adasum on heterogeneous cluster is not supported yet.' ) elif not check_num_rank_power_of_2( int(size() / local_size())): raise NotImplementedError( 'Running GPU Adasum with non-power of 2 nodes is not supported yet.' ) horovod_local_size = tf.cast(local_size(), dtype=tensor.dtype) new_tensor = summed_tensor / horovod_local_size else: warnings.warn( 'Adasum reduction does not currently support GPU reduction using MPI. Tensors ' 'are copied to CPU memory instead. To use Adasum for GPU reduction, please ' 'compile Horovod with HOROVOD_GPU_OPERATIONS=NCCL.' ) new_tensor = summed_tensor else: if not check_num_rank_power_of_2(size()): raise NotImplementedError( 'Running Adasum with non-power of 2 ranks is not supported yet.' ) new_tensor = summed_tensor else: new_tensor = (summed_tensor / horovod_size) if op == Average else summed_tensor return new_tensor
def __init__(self, config, x, y, x_b, y_b, x_b_v, y_b_v, num_classes_a, num_classes_b, is_training=True, ext_wts=None, y_sel=None, w_class_a=None, b_class_a=None): self._config = config self._is_training = is_training self._num_classes_a = num_classes_a self._num_classes_b = num_classes_b if config.backbone_class == 'resnet_backbone': bb_config = config.resnet_config else: assert False, 'Not supported' opt_config = config.optimizer_config proto_config = config.protonet_config transfer_config = config.transfer_config self._backbone = get_model(config.backbone_class, bb_config) self._inputs = x self._labels = y if opt_config.num_gpu > 1: self._labels_all = allgather(self._labels) else: self._labels_all = self._labels self._inputs_b = x_b self._labels_b = y_b self._inputs_b_v = x_b_v self._labels_b_v = y_b_v if opt_config.num_gpu > 1: self._labels_b_v_all = allgather(self._labels_b_v) else: self._labels_b_v_all = self._labels_b_v self._y_sel = y_sel self._mask = tf.placeholder(tf.bool, [], name='mask') # global_step = tf.get_variable( # 'global_step', shape=[], dtype=tf.int64, trainable=False) global_step = tf.contrib.framework.get_or_create_global_step() self._global_step = global_step log.info('LR decay steps {}'.format(opt_config.lr_decay_steps)) log.info('LR list {}'.format(opt_config.lr_list)) learn_rate = tf.train.piecewise_constant( global_step, list( np.array(opt_config.lr_decay_steps).astype(np.int64)), list(opt_config.lr_list)) self._learn_rate = learn_rate opt = self.get_optimizer(opt_config.optimizer, learn_rate) if opt_config.num_gpu > 1: opt = hvd.DistributedOptimizer(opt) with tf.name_scope('TaskA'): h_a = self.backbone(x, is_training=is_training, ext_wts=ext_wts) self._h_a = h_a # Apply BN ops. bn_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.name_scope('TaskB'): x_b_all = tf.concat([x_b, x_b_v], axis=0) if ext_wts is not None: h_b_all = self.backbone( x_b_all, is_training=is_training, reuse=True, ext_wts=ext_wts) else: h_b_all = self.backbone(x_b_all, is_training=is_training, reuse=True) with tf.name_scope('TaskA'): # Calculates hidden activation size. h_shape = h_a.get_shape() h_size = 1 for ss in h_shape[1:]: h_size *= int(ss) if w_class_a is None: if ext_wts is not None: w_class_a = weight_variable( [h_size, num_classes_a], init_method='numpy', dtype=tf.float32, init_param={'val': np.transpose(ext_wts['w_class_a'])}, wd=config.wd, name='w_class_a') b_class_a = weight_variable([], init_method='numpy', dtype=tf.float32, init_param={'val': ext_wts['b_class_a']}, wd=0e0, name='b_class_a') else: w_class_a = weight_variable([h_size, num_classes_a], init_method='truncated_normal', dtype=tf.float32, init_param={'stddev': 0.01}, wd=bb_config.wd, name='w_class_a') b_class_a = weight_variable([num_classes_a], init_method='constant', init_param={'val': 0.0}, name='b_class_a') self._w_class_a_orig = w_class_a self._b_class_a_orig = b_class_a else: assert b_class_a is not None w_class_a_orig = weight_variable([h_size, num_classes_a], init_method='truncated_normal', dtype=tf.float32, init_param={'stddev': 0.01}, wd=bb_config.wd, name='w_class_a') b_class_a_orig = weight_variable([num_classes_a], init_method='constant', init_param={'val': 0.0}, name='b_class_a') self._w_class_a_orig = w_class_a_orig self._b_class_a_orig = b_class_a_orig self._w_class_a = w_class_a self._b_class_a = b_class_a num_classes_a_dyn = tf.cast(tf.shape(b_class_a)[0], tf.int64) num_classes_a_dyn32 = tf.shape(b_class_a)[0] if ext_wts is None: init_val = 10.0 else: init_val = ext_wts['tau'][0] tau = weight_variable([], init_method='constant', init_param={'val': init_val}, name='tau') w_class_a_norm = self._normalize(w_class_a, 0) h_a_norm = self._normalize(h_a, 1) dot = tf.matmul(h_a_norm, w_class_a_norm) if ext_wts is not None: dot += b_class_a logits_a = tau * dot self._prediction_a = logits_a if opt_config.num_gpu > 1: self._prediction_a_all = allgather(self._prediction_a) else: self._prediction_a_all = self._prediction_a xent_a = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits_a, labels=y) cost_a = tf.reduce_mean(xent_a, name='xent') self._cost_a = cost_a cost_a += self._decay() correct_a = tf.equal(tf.argmax(logits_a, axis=1), y) self._correct_a = correct_a self._acc_a = tf.reduce_mean(tf.cast(correct_a, cost_a.dtype)) with tf.name_scope('TaskB'): h_b = h_b_all[:tf.shape(x_b)[0]] h_b_v = h_b_all[tf.shape(x_b)[0]:] # Add new axes for the `batch` dimension. h_b_ = tf.expand_dims(h_b, 0) h_b_v_ = tf.expand_dims(h_b_v, 0) y_b_ = tf.expand_dims(y_b, 0) y_b_v_ = tf.expand_dims(y_b_v, 0) protos_b = self._compute_protos(num_classes_b, h_b_, y_b_ - num_classes_a) w_class_a_ = tf.expand_dims(tf.transpose(w_class_a_norm), 0) # [1, K, D] w_class_b = self._normalize(protos_b, 2) # [1, K, D] self._w_class_b = w_class_b w_class_all = tf.concat([w_class_a_, w_class_b], axis=1) logits_b_v = tau * compute_logits_cosine(w_class_all, h_b_v_) self._logits_b_v = logits_b_v self._prediction_b = logits_b_v[0] if opt_config.num_gpu > 1: self._prediction_b_all = allgather(self._prediction_b) else: self._prediction_b_all = self._prediction_b # Mask out the old classes. def mask_fn(): bin_mask = tf.expand_dims( tf.reduce_sum( tf.one_hot(y_sel, num_classes_a + num_classes_b), 0, keep_dims=True), 0) logits_b_v_m = logits_b_v * (1.0 - bin_mask) logits_b_v_m -= bin_mask * 100.0 return logits_b_v_m if transfer_config.old_and_new: logits_b_v = tf.cond(self._mask, mask_fn, lambda: logits_b_v) xent_b_v = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits_b_v, labels=y_b_v_) cost_b = tf.reduce_mean(xent_b_v, name='xent') self._cost_b = cost_b if transfer_config.old_and_new: total_cost = cost_b else: total_cost = (transfer_config.cost_a_ratio * cost_a + transfer_config.cost_b_ratio * cost_b) self._total_cost = total_cost if not transfer_config.meta_only: # assert False, 'let us go for pretrained model first' var_list = tf.trainable_variables() var_list = list(filter(lambda x: 'phi' in x.name, var_list)) [log.info('Slow weights {}'.format(v.name)) for v in var_list] else: var_list = [] if is_training: grads_and_vars = opt.compute_gradients(total_cost, var_list) with tf.control_dependencies(bn_ops): [log.info('BN op {}'.format(op.name)) for op in bn_ops] train_op = opt.apply_gradients(grads_and_vars, global_step=global_step) grads_and_vars_b = opt.compute_gradients(cost_b, var_list) with tf.control_dependencies(bn_ops): train_op_b = opt.apply_gradients( grads_and_vars_b, global_step=global_step) with tf.control_dependencies(bn_ops): train_op_a = opt.minimize(cost_a, global_step=global_step) self._train_op = train_op self._train_op_a = train_op_a self._train_op_b = train_op_b self._initializer = tf.global_variables_initializer()