def generate_negative_ground_truth_predicted_targets(): ground_truth = -np.ones(4) predicted_targets = np.array([-1., -2., -3., -4.]) distributions = [ distr.ReparametrizedGaussian(y, 0.) for y in predicted_targets ] predictiveDistribution = distr.PredictiveDistribution(distributions) return ground_truth, predictiveDistribution
def generate_identical_ground_truth_predicted_targets(): ground_truth = np.array([-1., -2., -3., -4.]) predicted_targets = ground_truth distributions = [ distr.ReparametrizedGaussian(y, 0.) for y in predicted_targets ] predictiveDistribution = distr.PredictiveDistribution(distributions) return ground_truth, predictiveDistribution
def generate_random_labels_and_predictions_and_predictive_distribution(): np.random.seed(1) ground_truth = np.random.rand(30) predicted_targets = np.random.rand(30) distributions = [ distr.ReparametrizedGaussian(target, 0.) for target in predicted_targets ] predictiveDistribution = distr.PredictiveDistribution(distributions) return ground_truth, predicted_targets, predictiveDistribution