コード例 #1
0
def generate_negative_ground_truth_predicted_targets():
    ground_truth = -np.ones(4)
    predicted_targets = np.array([-1., -2., -3., -4.])
    distributions = [
        distr.ReparametrizedGaussian(y, 0.) for y in predicted_targets
    ]
    predictiveDistribution = distr.PredictiveDistribution(distributions)
    return ground_truth, predictiveDistribution
コード例 #2
0
def generate_identical_ground_truth_predicted_targets():
    ground_truth = np.array([-1., -2., -3., -4.])
    predicted_targets = ground_truth
    distributions = [
        distr.ReparametrizedGaussian(y, 0.) for y in predicted_targets
    ]
    predictiveDistribution = distr.PredictiveDistribution(distributions)
    return ground_truth, predictiveDistribution
コード例 #3
0
def generate_random_labels_and_predictions_and_predictive_distribution():
    np.random.seed(1)
    ground_truth = np.random.rand(30)
    predicted_targets = np.random.rand(30)
    distributions = [
        distr.ReparametrizedGaussian(target, 0.)
        for target in predicted_targets
    ]
    predictiveDistribution = distr.PredictiveDistribution(distributions)
    return ground_truth, predicted_targets, predictiveDistribution