コード例 #1
0
    def run(self):
        # create pharmacophore
        ref = PharmacophoreModel.from_pdb(pdb_code=self.pdb,
                                          chain=self.chain,
                                          representatives=self.input().path,
                                          identifier=self.pdb)
        ref.rank_features(max_features=6, feature_threshold=5)

        # write pymol file
        ref.write(self.output()["pymol"].path)

        # write Results file
        temp = tempfile.mkdtemp()
        PDBResult(self.pdb).download(temp)
        result = Results(protein=Protein.from_file(
            os.path.join(temp, "{}.pdb".format(self.pdb))),
                         super_grids=ref.dic)

        out_settings = HotspotWriter.Settings()
        out_settings.charged = False
        with HotspotWriter(os.path.dirname(self.output()["grids"].path),
                           grid_extension=".grd",
                           zip_results=True,
                           settings=out_settings) as w:
            w.write(result)

        # write aligned molecules
        with MoleculeWriter(self.output()['aligned_mols'].path) as w:
            for l in ref.aligned_ligands:
                w.write(l)

        # points
        points = ref._comparision_dict()
        with open(self.output()['points'].path, 'wb') as w:
            pickle.dump(points, w)
コード例 #2
0
    def get_pharmacophore_model(self, identifier="id_01", threshold=5):
        """
        Generates a :class:`hotspots.hotspot_pharmacophore.PharmacophoreModel` instance from peaks in the hotspot maps

        TODO: investigate using feature recognition to go from grids to features.

        :param str identifier: Identifier for displaying multiple models at once
        :param float cutoff: The score cutoff used to identify islands in the maps. One peak will be identified per island
        :return: a :class:`hotspots.hotspot_pharmacophore.PharmacophoreModel` instance
        """
        return PharmacophoreModel.from_hotspot(self,
                                               identifier=identifier,
                                               threshold=threshold)
コード例 #3
0
    def run(self):
        # generate representatives
        ref = PharmacophoreModel.from_pdb(pdb_code=self.pdb,
                                          chain=self.chain,
                                          identifier=self.pdb)
        if len(ref.representatives) > 2:
            ligands = ref.representatives
        else:
            ligands = ref.all_ligands

        with open(self.output().path, "w") as f:
            for l in ligands:
                f.write("{},{},{}\n".format(l.structure_id, l.chemical_id,
                                            l.smiles))
コード例 #4
0
def to_grid(target, pdb):
    out_dir = "Z:/patel_set/{}/{}".format(target, pdb)
    mols = MoleculeReader(
        join(out_dir, "reference_pharmacophore", "aligned_mols.mol2"))
    p = PharmacophoreModel.from_ligands(ligands=mols, identifier="test")
    result = Results(super_grids=p.dic,
                     protein=Protein.from_file(
                         join(out_dir, "hs", "{}.pdb".format(pdb))))

    out = Helper.get_out_dir(join(out_dir, "reference_pharmacophore", "grids"))

    settings = HotspotWriter.Settings()
    settings.isosurface_threshold = [2, 5, 10]

    with HotspotWriter(path=out, zip_results=True, settings=settings) as w:
        w.write(result)
コード例 #5
0
}

for target, pdbs in targets.items():
    print target
    for pdb in pdbs:
        chain = chains[pdb]
        ligand_id = ligands[pdb]

        out_dir = os.path.join(base, target, pdb, "reference")
        if not os.path.exists(out_dir):
            os.mkdir(out_dir)

        try:
            p = PharmacophoreModel._from_siena(pdb,
                                               ligand_id,
                                               mode,
                                               target,
                                               out_dir=out_dir)
            p.write(os.path.join(out_dir, "reference_pharmacophore.py"))

            prot = hs_io.HotspotReader(
                os.path.join(base, target, pdb, "out.zip")).read().protein

            hs = Results(protein=prot, super_grids=p.dic)

            with hs_io.HotspotWriter(out_dir) as wf:
                wf.write(hs)

            with io.MoleculeWriter(os.path.join(out_dir, "aligned.mol2")) as w:
                for l in p.representatives:
                    w.write(l)
コード例 #6
0
PDBResult(identifier=pdb).download(out_dir=dirname)

if os.path.exists(reps):
    representatives = reps
else:
    representatives = None

try:
    result = HotspotReader(path=os.path.join(dirname, "out.zip")).read()
    pharmacophore = result.get_pharmacophore_model()
    pharmacophore.rank_features(max_features=5)

except:
    pharmacophore = PharmacophoreModel.from_pdb(
        pdb_code=pdb,
        chain="H",
        out_dir=dirname,
        representatives=representatives)
    pharmacophore.rank_features(max_features=5)
    result = Results(super_grids=pharmacophore.dic,
                     protein=Protein.from_file(
                         os.path.join(dirname, pdb + ".pdb")))

pharmacophore.write(os.path.join(dirname, "crossminer.cm"))
pharmacophore.write(os.path.join(dirname, "pharmit.json"))
# write out Results object
settings = HotspotWriter.Settings()
settings.isosurface_threshold = [2, 5, 10]
with HotspotWriter(dirname, settings=settings) as w:
    w.write(result)
コード例 #7
0
tmp = tempfile.mkdtemp()
out_dir = "/home/pcurran/patel/CDK2/1aq1_ensemble"
centre_pdb = PDBResult("1aq1")
centre_pdb.download(out_dir)

ensemble_members = [("3QTU", "X44"), ("2VTL", "LZ5"), ("1OIT", "HDT"),
                    ("3R6X", "X84")]

pdbs = [PDBResult(x[0]) for x in ensemble_members]
for i, pdb in enumerate(pdbs):
    pdb.download(tmp)
    pdb.clustered_ligand = ensemble_members[i][1]

#prots = [Protein.from_file(os.path.join(tmp, member[0] + ".pdb")) for member in ensemble_members]

proteins, ligands = PharmacophoreModel._align_proteins(centre_pdb, "A", pdbs)

# create ensemble
for p in proteins:
    print p.identifier
    p.remove_all_metals()
    for l in p.ligands:
        p.remove_ligand(l.identifier)
    p.add_hydrogens()

    h = Runner()

    # hotspot calculation settings
    s = h.Settings()
    s.apolar_translation_threshold = 15
    s.polar_translation_threshold = 15