コード例 #1
0
    def train_kde(self, result, config_space):
        cg = BohbConfigGenerator(config_space)

        results_for_budget = dict()
        build_model_jobs = dict()
        id2conf = result.get_id2config_mapping()
        for id in id2conf:
            for r in result.get_runs_by_id(id):
                j = Job(id, config=id2conf[id]['config'], budget=r.budget)
                if r.loss is None:
                    r.loss = float('inf')
                if r.info is None:
                    r.info = dict()
                j.result = {'loss': r.loss, 'info': r.info}
                j.error_logs = r.error_logs

                if r.budget not in results_for_budget:
                    results_for_budget[r.budget] = list()
                results_for_budget[r.budget].append(j)

                if r.loss is not None and r.budget not in build_model_jobs:
                    build_model_jobs[r.budget] = j
                    continue
                cg.new_result(j, update_model=False)
        for j in build_model_jobs.values():
            cg.new_result(j, update_model=True)

        good_kdes = [m["good"] for b, m in sorted(cg.kde_models.items())]
        bad_kdes = [m["bad"] for b, m in sorted(cg.kde_models.items())]
        budgets = sorted(cg.kde_models.keys())
        return good_kdes, bad_kdes, budgets
コード例 #2
0
    def test_imputation_conditional_spaces(self):

        bohb = BOHB(self.configspace, random_fraction=0)

        raw_array = []

        for i in range(128):

            config = self.configspace.sample_configuration()
            raw_array.append(config.get_array())
            imputed_array = bohb.impute_conditional_data(np.array(raw_array))
            self.assertFalse(np.any(np.isnan(imputed_array)))
            job = Job(i, budget=1, config=config)
            job.result = {'loss': np.random.rand(), 'info': {}}
            bohb.new_result(job)

        for j in range(64):
            conf, info = bohb.get_config(1)
            self.assertTrue(info['model_based_pick'])
コード例 #3
0
class BOHBProposer(AbstractProposer):
    def __init__(self, config):
        super(BOHBProposer, self).__init__(config)
        self.tid = 0
        self.target = 1 if config[
            'target'] == min else -1  # bohb targets for loss only

        # BOHB config parameters
        set_default_keyvalue("n_iterations", 4, config)
        for k, v in BOHB_DEFAULT.items():
            set_default_keyvalue(k, v, config)
        if not config['min_points_in_model']:
            config['min_points_in_model'] = None
        # hyperband related parameters
        for k, v in SH_DEFAULT.items():
            set_default_keyvalue(k, v, config)
        # Hyperband related settings - modified from hpbandster/optimizers/bohb.py
        self.eta = config['eta']
        self.min_budget = config['min_budget']
        self.max_budget = config['max_budget']
        self.max_SH_iter = -int(
            np.log(self.min_budget / self.max_budget) / np.log(self.eta)) + 1
        self.budgets = self.max_budget * np.power(
            self.eta, -np.linspace(self.max_SH_iter - 1, 0, self.max_SH_iter))
        self.n_iterations = config['n_iterations']

        self.nSamples = self._get_nSample()
        bohb_config = {k: config[k] for k in BOHB_DEFAULT}
        configspace = self.create_configspace(config['parameter_config'])

        self.config_generator = BOHB(configspace, **bohb_config)

        ## Based on master.py
        self.iterations = []
        self.running_jobs = {}

    def get_param(self):
        """
        Get the next hyperparameter values, return None when experiment is finished.
        :return: hyperparameters in dictionary
        """
        while True:
            next_run = None
            for i in self.active_iterations():
                next_run = self.iterations[i].get_next_run()
                if next_run is not None:
                    break

            if next_run is not None:
                logger.debug("new hyperparameters %s" % (next_run, ))
                break
            else:
                if self.n_iterations > 0:
                    logger.debug("create new iteration for %d" %
                                 self.n_iterations)
                    self.iterations.append(
                        self.get_next_iteration(len(self.iterations)))
                    self.n_iterations -= 1
                else:
                    self.finished = True
                    return None

        config_id, config, budget = next_run
        job = Job(config_id, config=config, budget=budget)
        job.time_it("started")
        self.running_jobs[self.tid] = job
        config = config.copy()
        config['tid'] = self.tid
        config['n_iterations'] = budget  # for job execution
        self.tid += 1
        return config

    def update(self, score, job):
        """
        Wrap result and transfer to HpBandSter
        :param score: result
        :param job: job contains job id for configuration matching
        """
        i = job.config['tid']
        job = self.running_jobs[i]
        job.time_it("finished")
        job.result = {'loss': score * self.target}
        self.iterations[job.id[0]].register_result(job)
        self.config_generator.new_result(job)
        del self.running_jobs[i]

    def failed(self, job):
        """
        Failed jobs unsupported by BOHB Proposer.

        :param job: Failed job, containing job id
        :type job: Job
        """
        super().failed(job)
        raise NotImplementedError("BOHBProposer does not support failed jobs")

    def get_next_iteration(self, iteration, iteration_kwargs={}):
        """ Copied from https://github.com/automl/HpBandSter/blob/master/hpbandster/optimizers/bohb.py
        """
        s = self.max_SH_iter - 1 - (iteration % self.max_SH_iter)
        n0 = int(np.floor(self.max_SH_iter / (s + 1)) * self.eta**s)
        ns = [max(int(n0 * (self.eta**(-i))), 1) for i in range(s + 1)]
        return (SuccessiveHalving(
            HPB_iter=iteration,
            num_configs=ns,
            budgets=self.budgets[(-s - 1):],
            config_sampler=self.config_generator.get_config,
            **iteration_kwargs))

    def _get_nSample(self):
        nSamples = 0
        for iteration in range(self.n_iterations):
            s = self.max_SH_iter - 1 - (iteration % self.max_SH_iter)
            n0 = int(np.floor(self.max_SH_iter / (s + 1)) * self.eta**s)
            ns = [max(int(n0 * (self.eta**(-i))), 1) for i in range(s + 1)]
            nSamples += sum(ns)
        logger.debug("total exp %d:" % nSamples)
        return nSamples

    @staticmethod
    def create_configspace(parameter_config):
        """
        Wrap the Worker's get_configspace() function for HpBandSter interface
        """
        cs = CS.ConfigurationSpace()
        params = []
        for config in parameter_config:
            p = AbstractProposer.parse_param_config(config)
            if p['type'] == 'choice':
                param = CS.CategoricalHyperparameter(p['name'],
                                                     choices=p['range'])
            else:  # for int or float
                param = dict(name=p['name'])
                param['lower'], param['upper'] = min(p['range']), max(
                    p['range'])
                if p['type'] == 'int':
                    param = CS.UniformIntegerHyperparameter(**param)
                else:
                    param = CS.UniformFloatHyperparameter(**param)
            params.append(param)
        cs.add_hyperparameters(params)
        return cs

    @staticmethod
    def setup_config():  # pragma: no cover
        config = dict()
        for k, v in BOHB_DEFAULT.items():
            if k == "min_points_in_model":
                config[k] = input("%s [%s]:" % (k, v))
                if config[k]:
                    config[k] = int(config[k])
            else:
                config[k] = type(v)(input("%s [%s]:" % (k, v)) or v)
        for k, v in SH_DEFAULT.items():
            config[k] = type(v)(input("%s [%s]:" % (k, v)) or v)
        config.update(AbstractProposer.setup_config())
        return config

    def active_iterations(self):  # pragma: no cover
        """
        Based on :func:`hpbandster.core.master.Master.active_iterations`.
        """
        return list(
            filter(lambda idx: not self.iterations[idx].is_finished,
                   range(len(self.iterations))))

    def save(self, path):
        msg = "Save and restore not supported yet"
        logger.fatal(msg)
        raise NotImplementedError(msg)

    def reload(self, path):
        msg = "Save and restore not supported yet"
        logger.fatal(msg)
        raise NotImplementedError(msg)
コード例 #4
0
ファイル: bohb.py プロジェクト: stjordanis/ray
class TuneBOHB(Searcher):
    """BOHB suggestion component.


    Requires HpBandSter and ConfigSpace to be installed. You can install
    HpBandSter and ConfigSpace with: ``pip install hpbandster ConfigSpace``.

    This should be used in conjunction with HyperBandForBOHB.

    Args:
        space (ConfigurationSpace): Continuous ConfigSpace search space.
            Parameters will be sampled from this space which will be used
            to run trials.
        bohb_config (dict): configuration for HpBandSter BOHB algorithm
        max_concurrent (int): Deprecated. Use
            ``tune.suggest.ConcurrencyLimiter()``.
        metric (str): The training result objective value attribute. If None
            but a mode was passed, the anonymous metric `_metric` will be used
            per default.
        mode (str): One of {min, max}. Determines whether objective is
            minimizing or maximizing the metric attribute.
        points_to_evaluate (list): Initial parameter suggestions to be run
            first. This is for when you already have some good parameters
            you want to run first to help the algorithm make better suggestions
            for future parameters. Needs to be a list of dicts containing the
            configurations.
        seed (int): Optional random seed to initialize the random number
            generator. Setting this should lead to identical initial
            configurations at each run.

    Tune automatically converts search spaces to TuneBOHB's format:

    .. code-block:: python

        config = {
            "width": tune.uniform(0, 20),
            "height": tune.uniform(-100, 100),
            "activation": tune.choice(["relu", "tanh"])
        }

        algo = TuneBOHB(metric="mean_loss", mode="min")
        bohb = HyperBandForBOHB(
            time_attr="training_iteration",
            metric="mean_loss",
            mode="min",
            max_t=100)
        run(my_trainable, config=config, scheduler=bohb, search_alg=algo)

    If you would like to pass the search space manually, the code would
    look like this:

    .. code-block:: python

        import ConfigSpace as CS

        config_space = CS.ConfigurationSpace()
        config_space.add_hyperparameter(
            CS.UniformFloatHyperparameter("width", lower=0, upper=20))
        config_space.add_hyperparameter(
            CS.UniformFloatHyperparameter("height", lower=-100, upper=100))
        config_space.add_hyperparameter(
            CS.CategoricalHyperparameter(
                name="activation", choices=["relu", "tanh"]))

        algo = TuneBOHB(
            config_space, metric="mean_loss", mode="min")
        bohb = HyperBandForBOHB(
            time_attr="training_iteration",
            metric="mean_loss",
            mode="min",
            max_t=100)
        run(my_trainable, scheduler=bohb, search_alg=algo)

    """
    def __init__(
            self,
            space: Optional[Union[Dict,
                                  "ConfigSpace.ConfigurationSpace"]] = None,
            bohb_config: Optional[Dict] = None,
            max_concurrent: Optional[int] = None,
            metric: Optional[str] = None,
            mode: Optional[str] = None,
            points_to_evaluate: Optional[List[Dict]] = None,
            seed: Optional[int] = None):
        assert BOHB is not None, """HpBandSter must be installed!
            You can install HpBandSter with the command:
            `pip install hpbandster ConfigSpace`."""
        if mode:
            assert mode in ["min", "max"], "`mode` must be 'min' or 'max'."
        self._max_concurrent = max_concurrent
        self.trial_to_params = {}
        self._metric = metric

        self._bohb_config = bohb_config

        if isinstance(space, dict) and space:
            resolved_vars, domain_vars, grid_vars = parse_spec_vars(space)
            if domain_vars or grid_vars:
                logger.warning(
                    UNRESOLVED_SEARCH_SPACE.format(par="space",
                                                   cls=type(self)))
                space = self.convert_search_space(space)

        self._space = space
        self._seed = seed

        self._points_to_evaluate = points_to_evaluate

        super(TuneBOHB, self).__init__(metric=self._metric,
                                       mode=mode,
                                       max_concurrent=max_concurrent)

        if self._space:
            self._setup_bohb()

    def _setup_bohb(self):
        from hpbandster.optimizers.config_generators.bohb import BOHB

        if self._metric is None and self._mode:
            # If only a mode was passed, use anonymous metric
            self._metric = DEFAULT_METRIC

        if self._mode == "max":
            self._metric_op = -1.
        elif self._mode == "min":
            self._metric_op = 1.

        if self._seed is not None:
            self._space.seed(self._seed)

        bohb_config = self._bohb_config or {}
        self.bohber = BOHB(self._space, **bohb_config)

    def set_search_properties(self, metric: Optional[str], mode: Optional[str],
                              config: Dict, **spec) -> bool:
        if self._space:
            return False
        space = self.convert_search_space(config)
        self._space = space

        if metric:
            self._metric = metric
        if mode:
            self._mode = mode

        self._setup_bohb()
        return True

    def suggest(self, trial_id: str) -> Optional[Dict]:
        if not self._space:
            raise RuntimeError(
                UNDEFINED_SEARCH_SPACE.format(cls=self.__class__.__name__,
                                              space="space"))

        if not self._metric or not self._mode:
            raise RuntimeError(
                UNDEFINED_METRIC_MODE.format(cls=self.__class__.__name__,
                                             metric=self._metric,
                                             mode=self._mode))

        if self._points_to_evaluate:
            config = self._points_to_evaluate.pop(0)
        else:
            # This parameter is not used in hpbandster implementation.
            config, _ = self.bohber.get_config(None)
        self.trial_to_params[trial_id] = copy.deepcopy(config)
        return unflatten_list_dict(config)

    def on_trial_result(self, trial_id: str, result: Dict):
        if "hyperband_info" not in result:
            logger.warning("BOHB Info not detected in result. Are you using "
                           "HyperBandForBOHB as a scheduler?")
        elif "budget" in result.get("hyperband_info", {}):
            hbs_wrapper = self.to_wrapper(trial_id, result)
            self.bohber.new_result(hbs_wrapper)

    def on_trial_complete(self,
                          trial_id: str,
                          result: Optional[Dict] = None,
                          error: bool = False):
        del self.trial_to_params[trial_id]

    def to_wrapper(self, trial_id: str, result: Dict) -> _BOHBJobWrapper:
        return _BOHBJobWrapper(self._metric_op * result[self.metric],
                               result["hyperband_info"]["budget"],
                               self.trial_to_params[trial_id])

    @staticmethod
    def convert_search_space(spec: Dict) -> "ConfigSpace.ConfigurationSpace":
        resolved_vars, domain_vars, grid_vars = parse_spec_vars(spec)

        if grid_vars:
            raise ValueError(
                "Grid search parameters cannot be automatically converted "
                "to a TuneBOHB search space.")

        # Flatten and resolve again after checking for grid search.
        spec = flatten_dict(spec, prevent_delimiter=True)
        resolved_vars, domain_vars, grid_vars = parse_spec_vars(spec)

        def resolve_value(
                par: str,
                domain: Domain) -> ConfigSpace.hyperparameters.Hyperparameter:
            quantize = None

            sampler = domain.get_sampler()
            if isinstance(sampler, Quantized):
                quantize = sampler.q
                sampler = sampler.sampler

            if isinstance(domain, Float):
                if isinstance(sampler, LogUniform):
                    lower = domain.lower
                    upper = domain.upper
                    if quantize:
                        lower = math.ceil(domain.lower / quantize) * quantize
                        upper = math.floor(domain.upper / quantize) * quantize
                    return ConfigSpace.UniformFloatHyperparameter(par,
                                                                  lower=lower,
                                                                  upper=upper,
                                                                  q=quantize,
                                                                  log=True)
                elif isinstance(sampler, Uniform):
                    lower = domain.lower
                    upper = domain.upper
                    if quantize:
                        lower = math.ceil(domain.lower / quantize) * quantize
                        upper = math.floor(domain.upper / quantize) * quantize
                    return ConfigSpace.UniformFloatHyperparameter(par,
                                                                  lower=lower,
                                                                  upper=upper,
                                                                  q=quantize,
                                                                  log=False)
                elif isinstance(sampler, Normal):
                    return ConfigSpace.hyperparameters.\
                       NormalFloatHyperparameter(
                        par,
                        mu=sampler.mean,
                        sigma=sampler.sd,
                        q=quantize,
                        log=False)

            elif isinstance(domain, Integer):
                if isinstance(sampler, LogUniform):
                    lower = domain.lower
                    upper = domain.upper
                    if quantize:
                        lower = math.ceil(domain.lower / quantize) * quantize
                        upper = math.floor(domain.upper / quantize) * quantize
                    else:
                        # Tune search space integers are exclusive
                        upper -= 1
                    return ConfigSpace.UniformIntegerHyperparameter(
                        par, lower=lower, upper=upper, q=quantize, log=True)
                elif isinstance(sampler, Uniform):
                    lower = domain.lower
                    upper = domain.upper
                    if quantize:
                        lower = math.ceil(domain.lower / quantize) * quantize
                        upper = math.floor(domain.upper / quantize) * quantize
                    else:
                        # Tune search space integers are exclusive
                        upper -= 1
                    return ConfigSpace.UniformIntegerHyperparameter(
                        par, lower=lower, upper=upper, q=quantize, log=False)

            elif isinstance(domain, Categorical):
                if isinstance(sampler, Uniform):
                    return ConfigSpace.CategoricalHyperparameter(
                        par, choices=domain.categories)

            raise ValueError("TuneBOHB does not support parameters of type "
                             "`{}` with samplers of type `{}`".format(
                                 type(domain).__name__,
                                 type(domain.sampler).__name__))

        cs = ConfigSpace.ConfigurationSpace()
        for path, domain in domain_vars:
            par = "/".join(str(p) for p in path)
            value = resolve_value(par, domain)
            cs.add_hyperparameter(value)

        return cs

    def save(self, checkpoint_path: str):
        save_object = self.__dict__
        with open(checkpoint_path, "wb") as outputFile:
            cloudpickle.dump(save_object, outputFile)

    def restore(self, checkpoint_path: str):
        with open(checkpoint_path, "rb") as inputFile:
            save_object = cloudpickle.load(inputFile)
        self.__dict__.update(save_object)
コード例 #5
0
class TuneBOHB(Searcher):
    """BOHB suggestion component.


    Requires HpBandSter and ConfigSpace to be installed. You can install
    HpBandSter and ConfigSpace with: ``pip install hpbandster ConfigSpace``.

    This should be used in conjunction with HyperBandForBOHB.

    Args:
        space (ConfigurationSpace): Continuous ConfigSpace search space.
            Parameters will be sampled from this space which will be used
            to run trials.
        bohb_config (dict): configuration for HpBandSter BOHB algorithm
        max_concurrent (int): Number of maximum concurrent trials. Defaults
            to 10.
        metric (str): The training result objective value attribute.
        mode (str): One of {min, max}. Determines whether objective is
            minimizing or maximizing the metric attribute.

    Tune automatically converts search spaces to TuneBOHB's format:

    .. code-block:: python

        config = {
            "width": tune.uniform(0, 20),
            "height": tune.uniform(-100, 100),
            "activation": tune.choice(["relu", "tanh"])
        }

        algo = TuneBOHB(max_concurrent=4, metric="mean_loss", mode="min")
        bohb = HyperBandForBOHB(
            time_attr="training_iteration",
            metric="mean_loss",
            mode="min",
            max_t=100)
        run(my_trainable, config=config, scheduler=bohb, search_alg=algo)

    If you would like to pass the search space manually, the code would
    look like this:

    .. code-block:: python

        import ConfigSpace as CS

        config_space = CS.ConfigurationSpace()
        config_space.add_hyperparameter(
            CS.UniformFloatHyperparameter("width", lower=0, upper=20))
        config_space.add_hyperparameter(
            CS.UniformFloatHyperparameter("height", lower=-100, upper=100))
        config_space.add_hyperparameter(
            CS.CategoricalHyperparameter(
                name="activation", choices=["relu", "tanh"]))

        algo = TuneBOHB(
            config_space, max_concurrent=4, metric="mean_loss", mode="min")
        bohb = HyperBandForBOHB(
            time_attr="training_iteration",
            metric="mean_loss",
            mode="min",
            max_t=100)
        run(my_trainable, scheduler=bohb, search_alg=algo)

    """
    def __init__(self,
                 space=None,
                 bohb_config=None,
                 max_concurrent=10,
                 metric=None,
                 mode=None):
        from hpbandster.optimizers.config_generators.bohb import BOHB
        assert BOHB is not None, "HpBandSter must be installed!"
        if mode:
            assert mode in ["min", "max"], "`mode` must be 'min' or 'max'."
        self._max_concurrent = max_concurrent
        self.trial_to_params = {}
        self.running = set()
        self.paused = set()
        self._metric = metric

        self._bohb_config = bohb_config
        self._space = space

        super(TuneBOHB, self).__init__(metric=self._metric, mode=mode)

        if self._space:
            self.setup_bohb()

    def setup_bohb(self):
        from hpbandster.optimizers.config_generators.bohb import BOHB

        if self._mode == "max":
            self._metric_op = -1.
        elif self._mode == "min":
            self._metric_op = 1.

        bohb_config = self._bohb_config or {}
        self.bohber = BOHB(self._space, **bohb_config)

    def set_search_properties(self, metric, mode, config):
        if self._space:
            return False
        space = self.convert_search_space(config)
        self._space = space

        if metric:
            self._metric = metric
        if mode:
            self._mode = mode

        self.setup_bohb()
        return True

    def suggest(self, trial_id):
        if not self._space:
            raise RuntimeError(
                "Trying to sample a configuration from {}, but no search "
                "space has been defined. Either pass the `{}` argument when "
                "instantiating the search algorithm, or pass a `config` to "
                "`tune.run()`.".format(self.__class__.__name__, "space"))

        if len(self.running) < self._max_concurrent:
            # This parameter is not used in hpbandster implementation.
            config, info = self.bohber.get_config(None)
            self.trial_to_params[trial_id] = copy.deepcopy(config)
            self.running.add(trial_id)
            return unflatten_dict(config)
        return None

    def on_trial_result(self, trial_id, result):
        if trial_id not in self.paused:
            self.running.add(trial_id)
        if "hyperband_info" not in result:
            logger.warning("BOHB Info not detected in result. Are you using "
                           "HyperBandForBOHB as a scheduler?")
        elif "budget" in result.get("hyperband_info", {}):
            hbs_wrapper = self.to_wrapper(trial_id, result)
            self.bohber.new_result(hbs_wrapper)

    def on_trial_complete(self, trial_id, result=None, error=False):
        del self.trial_to_params[trial_id]
        if trial_id in self.paused:
            self.paused.remove(trial_id)
        if trial_id in self.running:
            self.running.remove(trial_id)

    def to_wrapper(self, trial_id, result):
        return _BOHBJobWrapper(self._metric_op * result[self.metric],
                               result["hyperband_info"]["budget"],
                               self.trial_to_params[trial_id])

    def on_pause(self, trial_id):
        self.paused.add(trial_id)
        self.running.remove(trial_id)

    def on_unpause(self, trial_id):
        self.paused.remove(trial_id)
        self.running.add(trial_id)

    @staticmethod
    def convert_search_space(spec: Dict):
        spec = flatten_dict(spec, prevent_delimiter=True)
        resolved_vars, domain_vars, grid_vars = parse_spec_vars(spec)

        if grid_vars:
            raise ValueError(
                "Grid search parameters cannot be automatically converted "
                "to a TuneBOHB search space.")

        def resolve_value(par, domain):
            quantize = None

            sampler = domain.get_sampler()
            if isinstance(sampler, Quantized):
                quantize = sampler.q
                sampler = sampler.sampler

            if isinstance(domain, Float):
                if isinstance(sampler, LogUniform):
                    lower = domain.lower
                    upper = domain.upper
                    if quantize:
                        lower = math.ceil(domain.lower / quantize) * quantize
                        upper = math.floor(domain.upper / quantize) * quantize
                    return ConfigSpace.UniformFloatHyperparameter(par,
                                                                  lower=lower,
                                                                  upper=upper,
                                                                  q=quantize,
                                                                  log=True)
                elif isinstance(sampler, Uniform):
                    lower = domain.lower
                    upper = domain.upper
                    if quantize:
                        lower = math.ceil(domain.lower / quantize) * quantize
                        upper = math.floor(domain.upper / quantize) * quantize
                    return ConfigSpace.UniformFloatHyperparameter(par,
                                                                  lower=lower,
                                                                  upper=upper,
                                                                  q=quantize,
                                                                  log=False)
                elif isinstance(sampler, Normal):
                    return ConfigSpace.NormalFloatHyperparameter(
                        par,
                        mu=sampler.mean,
                        sigma=sampler.sd,
                        q=quantize,
                        log=False)

            elif isinstance(domain, Integer):
                if isinstance(sampler, Uniform):
                    lower = domain.lower
                    upper = domain.upper
                    if quantize:
                        lower = math.ceil(domain.lower / quantize) * quantize
                        upper = math.floor(domain.upper / quantize) * quantize
                    return ConfigSpace.UniformIntegerHyperparameter(
                        par, lower=lower, upper=upper, q=quantize, log=False)

            elif isinstance(domain, Categorical):
                if isinstance(sampler, Uniform):
                    return ConfigSpace.CategoricalHyperparameter(
                        par, choices=domain.categories)

            raise ValueError("TuneBOHB does not support parameters of type "
                             "`{}` with samplers of type `{}`".format(
                                 type(domain).__name__,
                                 type(domain.sampler).__name__))

        cs = ConfigSpace.ConfigurationSpace()
        for path, domain in domain_vars:
            par = "/".join(path)
            value = resolve_value(par, domain)
            cs.add_hyperparameter(value)

        return cs
コード例 #6
0
class BOHB(BaseAlgorithm):
    """Bayesian Optimization with HyperBand

    This class is a wrapper around the librairy HpBandSter:
    https://github.com/automl/HpBandSter.

    For more information on the algorithm,
    see original paper at https://arxiv.org/abs/1807.01774.

    Falkner, Stefan, Aaron Klein, and Frank Hutter. "BOHB: Robust and efficient hyperparameter
    optimization at scale." In International Conference on Machine Learning, pp. 1437-1446. PMLR,
    2018.

    Parameters
    ----------
    space: `orion.algo.space.Space`
        Optimisation space with priors for each dimension.
    seed: None, int or sequence of int
        Seed for the random number generator used to sample new trials.
        Default: ``None``
    min_points_in_model: int
        Number of observations to start building a KDE. If ``None``, uses number
        of dimensions in the search space + 1. Default: ``None``
    top_n_percent: int
        Percentage ( between 1 and 99) of the observations that are considered good. Default: 15
    num_samples: int
        Number of samples to optimize Expected Improvement. Default: 64
    random_fraction: float
        Fraction of purely random configurations that are sampled from the
        prior without the model. Default: 1/3
    bandwidth_factor: float
        To encourage diversity, the points proposed to optimize EI, are sampled
        from a 'widened' KDE where the bandwidth is multiplied by this factor. Default: 3
    min_bandwidth: float
        To keep diversity, even when all (good) samples have the same value
        for one of the parameters, a minimum bandwidth is used instead of
        zero. Default: 1e-3
    parallel_strategy: dict or None, optional
        The configuration of a parallel strategy to use for pending trials or broken trials.
        Default is a MaxParallelStrategy for broken trials and NoParallelStrategy for pending
        trials.

    """

    requires_type = None
    requires_dist = None
    requires_shape = "flattened"

    def __init__(
        self,
        space,
        seed=None,
        min_points_in_model=None,
        top_n_percent=15,
        num_samples=64,
        random_fraction=1 / 3,
        bandwidth_factor=3,
        min_bandwidth=1e-3,
        parallel_strategy=None,
    ):  # pylint: disable=too-many-arguments

        if parallel_strategy is None:
            parallel_strategy = {
                "of_type": "StatusBasedParallelStrategy",
                "strategy_configs": {
                    "broken": {
                        "of_type": "MaxParallelStrategy",
                    },
                },
            }

        self.strategy = strategy_factory.create(**parallel_strategy)

        super().__init__(
            space,
            seed=seed,
            min_points_in_model=min_points_in_model,
            top_n_percent=top_n_percent,
            num_samples=num_samples,
            random_fraction=random_fraction,
            bandwidth_factor=bandwidth_factor,
            min_bandwidth=min_bandwidth,
            parallel_strategy=parallel_strategy,
        )
        self.trial_meta = {}
        self.trial_results = {}
        self.iteration = 0
        self.iterations = []

        fidelity_index = self.fidelity_index
        if fidelity_index is None:
            raise RuntimeError(SPACE_ERROR)
        fidelity_dim = self.space[fidelity_index]

        fidelity_dim: Fidelity = space[self.fidelity_index]

        # NOTE: This isn't a Fidelity, it's a TransformedDimension<Fidelity>
        from orion.core.worker.transformer import TransformedDimension

        # NOTE: Currently bypassing (possibly more than one) `TransformedDimension` wrappers to get
        # the 'low', 'high' and 'base' attributes.
        while isinstance(fidelity_dim, TransformedDimension):
            fidelity_dim = fidelity_dim.original_dimension
        assert isinstance(fidelity_dim, Fidelity)

        self.min_budget = fidelity_dim.low
        self.max_budget = fidelity_dim.high
        self.eta = fidelity_dim.base

        self._setup()

    def _setup(self):
        self.max_sh_iter = (
            -int(np.log(self.min_budget / self.max_budget) / np.log(self.eta))
            + 1)
        self.budgets = self.max_budget * np.power(
            self.eta, -np.linspace(self.max_sh_iter - 1, 0, self.max_sh_iter))

        self.bohb = CG_BOHB(  # pylint: disable=attribute-defined-outside-init
            configspace=convert_space(self.space),
            min_points_in_model=self.min_points_in_model,
            top_n_percent=self.top_n_percent,
            num_samples=self.num_samples,
            random_fraction=self.random_fraction,
            bandwidth_factor=self.bandwidth_factor,
            min_bandwidth=self.min_bandwidth,
        )
        self.bohb.configspace.seed(self.seed)

    def _make_iteration(self, iteration):
        ss = self.max_sh_iter - 1 - (iteration % self.max_sh_iter)

        # number of configurations in that bracket
        n0 = int(np.floor((self.max_sh_iter) / (ss + 1)) * self.eta**ss)
        ns = [max(int(n0 * (self.eta**(-i))), 1) for i in range(ss + 1)]

        return SuccessiveHalving(
            HPB_iter=iteration,
            num_configs=ns,
            budgets=self.budgets[(-ss - 1):],
            config_sampler=self.bohb.get_config,
        )

    def seed_rng(self, seed):
        """Seed the state of the random number generator.

        Parameters
        ----------
        seed: int
            Integer seed for the random number generator.

        """
        np.random.seed(seed)
        if hasattr(self, "bohb"):
            self.bohb.configspace.seed(seed)

    @property
    def state_dict(self):
        """Return a state dict that can be used to reset the state of the algorithm."""
        state_dict = super().state_dict
        state_dict["rng_state"] = np.random.get_state()
        state_dict["eta"] = self.eta
        state_dict["min_budget"] = self.min_budget
        state_dict["max_budget"] = self.max_budget
        state_dict["iteration"] = self.iteration
        state_dict["iterations"] = copy.deepcopy(self.iterations)
        state_dict["trial_meta"] = dict(self.trial_meta)
        state_dict["trial_results"] = dict(self.trial_results)
        state_dict["bohb"] = copy.deepcopy(self.bohb)
        state_dict["strategy"] = self.strategy.state_dict
        return state_dict

    def set_state(self, state_dict):
        """Reset the state of the algorithm based on the given state_dict

        :param state_dict: Dictionary representing state of an algorithm
        """
        super().set_state(state_dict)
        np.random.set_state(state_dict["rng_state"])
        self.eta = state_dict["eta"]
        self.min_budget = state_dict["min_budget"]
        self.max_budget = state_dict["max_budget"]
        self.iteration = state_dict["iteration"]
        self.iterations = state_dict["iterations"]
        self.trial_meta = state_dict["trial_meta"]
        self.trial_results = state_dict["trial_results"]
        self.bohb = state_dict["bohb"]  # pylint: disable=attribute-defined-outside-init
        self.strategy.set_state(state_dict["strategy"])
        self._setup()

    def suggest(self, num):
        """Suggest a number of new sets of parameters.

        Parameters
        ----------
        num: int, optional
            Number of trials to suggest. The algorithm may return less than the number of trials
            requested.

        Returns
        -------
        list of trials or None
            A list of trials representing values suggested by the algorithm. The algorithm may opt
            out if it cannot make a good suggestion at the moment (it may be waiting for other
            trials to complete), in which case it will return None.


        Notes
        -----
        New parameters must be compliant with the problem's domain `orion.algo.space.Space`.

        """
        def run_to_trial(run):
            params = transform(run[1])
            params[self.fidelity_index] = run[2]
            return dict_to_trial(params, self.space)

        def sample_iteration(iteration, trials):
            while len(trials) < num and not iteration.is_finished:
                run = iteration.get_next_run()
                if run is None:
                    break
                new_trial = run_to_trial(run)

                # This means the job was already suggested and we have a result
                result = self.trial_results.get(self.get_id(new_trial), None)
                if result is not None:
                    job = FakeJob(run, new_trial)
                    job.result["loss"] = result
                    iteration.register_result(job)
                    self.bohb.new_result(job)
                    continue

                self.trial_meta.setdefault(self.get_id(new_trial),
                                           []).append(run)
                self.register(new_trial)
                trials.append(new_trial)

        trials = []
        for it in self.iterations:
            sample_iteration(it, trials)
        # If we don't have enough trials and there are still
        # some iterations left
        if self.iteration < len(self.budgets):
            self.iterations.append(self._make_iteration(self.iteration))
            self.iteration += 1
            sample_iteration(self.iterations[-1], trials)

        return trials

    def observe(self, trials):
        """Observe the `trials` new state of result.

        Parameters
        ----------
        trials: list of ``orion.core.worker.trial.Trial``
           Trials from a `orion.algo.space.Space`.

        """
        super().observe(trials)
        for trial in trials:
            if trial.status == "broken":
                trial = self.strategy.infer(trial)
            if trial.objective is not None:
                self.trial_results[self.get_id(trial)] = trial.objective.value
            runs = self.trial_meta.get(self.get_id(trial), [])
            for run in runs:
                job = FakeJob(run, trial)
                self.iterations[job.id[0]].register_result(job)
                self.bohb.new_result(job)

    @property
    def is_done(self):
        """Return True, if an algorithm holds that there can be no further improvement."""
        return self.iteration == len(self.budgets) and all(
            it.is_finished for it in self.iterations)
コード例 #7
0
class TuneBOHB(SuggestionAlgorithm):
    """BOHB suggestion component.


    Requires HpBandSter and ConfigSpace to be installed. You can install
    HpBandSter and ConfigSpace with: ``pip install hpbandster ConfigSpace``.

    This should be used in conjunction with HyperBandForBOHB.

    Args:
        space (ConfigurationSpace): Continuous ConfigSpace search space.
            Parameters will be sampled from this space which will be used
            to run trials.
        bohb_config (dict): configuration for HpBandSter BOHB algorithm
        max_concurrent (int): Number of maximum concurrent trials. Defaults
            to 10.
        metric (str): The training result objective value attribute.
        mode (str): One of {min, max}. Determines whether objective is
            minimizing or maximizing the metric attribute.

    Example:

    .. code-block:: python

        import ConfigSpace as CS

        config_space = CS.ConfigurationSpace()
        config_space.add_hyperparameter(
            CS.UniformFloatHyperparameter('width', lower=0, upper=20))
        config_space.add_hyperparameter(
            CS.UniformFloatHyperparameter('height', lower=-100, upper=100))
        config_space.add_hyperparameter(
            CS.CategoricalHyperparameter(
                name='activation', choices=['relu', 'tanh']))

        algo = TuneBOHB(
            config_space, max_concurrent=4, metric='mean_loss', mode='min')
        bohb = HyperBandForBOHB(
            time_attr='training_iteration',
            metric='mean_loss',
            mode='min',
            max_t=100)
        run(MyTrainableClass, scheduler=bohb, search_alg=algo)

    """
    def __init__(self,
                 space,
                 bohb_config=None,
                 max_concurrent=10,
                 metric="neg_mean_loss",
                 mode="max"):
        from hpbandster.optimizers.config_generators.bohb import BOHB
        assert BOHB is not None, "HpBandSter must be installed!"
        assert mode in ["min", "max"], "`mode` must be 'min' or 'max'!"
        self._max_concurrent = max_concurrent
        self.trial_to_params = {}
        self.running = set()
        self.paused = set()
        self._metric = metric
        if mode == "max":
            self._metric_op = -1.
        elif mode == "min":
            self._metric_op = 1.
        bohb_config = bohb_config or {}
        self.bohber = BOHB(space, **bohb_config)
        super(TuneBOHB, self).__init__(metric=self._metric, mode=mode)

    def suggest(self, trial_id):
        if len(self.running) < self._max_concurrent:
            # This parameter is not used in hpbandster implementation.
            config, info = self.bohber.get_config(None)
            self.trial_to_params[trial_id] = copy.deepcopy(config)
            self.running.add(trial_id)
            return config
        return None

    def on_trial_result(self, trial_id, result):
        if trial_id not in self.paused:
            self.running.add(trial_id)
        if "hyperband_info" not in result:
            logger.warning("BOHB Info not detected in result. Are you using "
                           "HyperBandForBOHB as a scheduler?")
        elif "budget" in result.get("hyperband_info", {}):
            hbs_wrapper = self.to_wrapper(trial_id, result)
            self.bohber.new_result(hbs_wrapper)

    def on_trial_complete(self,
                          trial_id,
                          result=None,
                          error=False,
                          early_terminated=False):
        del self.trial_to_params[trial_id]
        if trial_id in self.paused:
            self.paused.remove(trial_id)
        if trial_id in self.running:
            self.running.remove(trial_id)

    def to_wrapper(self, trial_id, result):
        return _BOHBJobWrapper(self._metric_op * result[self.metric],
                               result["hyperband_info"]["budget"],
                               self.trial_to_params[trial_id])

    def on_pause(self, trial_id):
        self.paused.add(trial_id)
        self.running.remove(trial_id)

    def on_unpause(self, trial_id):
        self.paused.remove(trial_id)
        self.running.add(trial_id)