コード例 #1
0
ファイル: model.py プロジェクト: zilunzhang/hpargparse
def get_model():
    base_channel = _("base_channel", 32)  # <-- hyperparameter
    in_channels = 1  # _('input_channels', 1)

    return nn.Sequential(
        EnsureFloat(),
        ConvBNReLU(in_channels, base_channel, 3, stride=2, padding=1),
        ConvBNReLU(base_channel, base_channel * 2, 3, stride=2, padding=1),
        ConvBNReLU(base_channel * 2, base_channel * 4, 3, stride=2, padding=1),
        GlobalAveragePooling(),
        nn.Linear(base_channel * 4, 10),
    )
コード例 #2
0
from hpman.m import _

a = _("a", {"key": 1})
b = _("b", [1, 2, 3])
c = _("c", 23)
コード例 #3
0
from hpman.m import _

a = _("a", {"key": 1})
b = _("b", [1, 2, 3])
コード例 #4
0
from hpman.m import _

_("num_channels", 128)
_("num_layers", 50)
コード例 #5
0
ファイル: hints_example.py プロジェクト: zilunzhang/hpman
import argparse

from hpman.hpm_db import L
from hpman.m import _

_("optimizer", "adam", choices=["adam", "sgd"])

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    _.parse_file(__file__)
    occurrences = _.db.select(lambda row: row.name == "optimizer")
    oc = [oc for oc in occurrences if oc["hints"] is not None][0]
    choices = oc["hints"]["choices"]
    value = oc["value"]

    parser.add_argument("--optimizer", default=value, choices=choices)
    args = parser.parse_args()

    print("optimizer: {}".format(args.optimizer))
コード例 #6
0
def mult():
    return _("a") * _("b")
コード例 #7
0
def add():
    return _("a", 1) + _("b", 2)
コード例 #8
0
def add():
    return _("a", 0) + _("b", 0)
コード例 #9
0
ファイル: train.py プロジェクト: zilunzhang/hpargparse
def main():
    parser = argparse.ArgumentParser()
    _.parse_file(BASE_DIR)
    hpargparse.bind(parser, _)
    parser.parse_args()  # we need not to use args

    # print all hyperparameters
    print("-" * 10 + " Hyperparameters " + "-" * 10)
    print(yaml.dump(_.get_values()))

    optimizer_cls = {
        "adam": optim.Adam,
        "sgd": functools.partial(optim.SGD, momentum=0.9),
    }[_("optimizer", "adam")  # <-- hyperparameter
      ]

    import model

    net = model.get_model()
    if torch.cuda.is_available():
        net.cuda()

    optimizer = optimizer_cls(
        net.parameters(),
        lr=_("learning_rate", 1e-3),  # <-- hyperparameter
        weight_decay=_("weight_decay", 1e-5),  # <-- hyperparameter
    )

    import dataset

    train_ds = dataset.get_data_and_labels("train")
    test_ds = dataset.get_data_and_labels("test")
    if torch.cuda.is_available():
        # since mnist is a small dataset, we store the test dataset all in the
        # gpu memory
        test_ds = {k: v.cuda() for k, v in test_ds.items()}

    rng = np.random.RandomState(_("seed", 42))  # <-- hyperparameter

    for epoch in range(_("num_epochs", 30)):  # <-- hyperparameter
        net.train()
        tq = tqdm(
            enumerate(
                dataset.iter_dataset_batch(
                    rng,
                    train_ds,
                    _("batch_size", 256),  # <-- hyperparameter
                    cuda=torch.cuda.is_available(),
                )))
        for step, minibatch in tq:
            optimizer.zero_grad()

            Y_pred = net(minibatch["data"])
            loss = model.compute_loss(Y_pred, minibatch["labels"])

            loss.backward()
            optimizer.step()

            metrics = model.compute_metrics(Y_pred, minibatch["labels"])
            metrics["loss"] = loss.detach().cpu().numpy()
            tq.desc = "e:{} s:{} {}".format(
                epoch,
                step,
                " ".join([
                    "{}:{}".format(k, v) for k, v in sorted(metrics.items())
                ]),
            )

        net.eval()

        # since mnist is a small dataset, we predict all values at once.
        Y_pred = net(test_ds["data"])
        metrics = model.compute_metrics(Y_pred, test_ds["labels"])
        print("eval: {}".format(" ".join(
            ["{}:{}".format(k, v) for k, v in sorted(metrics.items())])))
コード例 #10
0
ファイル: lib.py プロジェクト: zilunzhang/hpargparse
def add():
    # define a hyperparameter on-the-fly with defaults
    return _("a", 1) + _("b", 2)
コード例 #11
0
ファイル: lib.py プロジェクト: zilunzhang/hpargparse
def mult():
    # reuse a pre-defined hyperparameters
    return _("a") * _("b")
コード例 #12
0
from hpman.m import _


def func():
    pass


hpx = _("1-hpx", 123)
hpp = _("2-hpp", func())
xxx = _("3-xxx", {"a": 1, "b": 2})
bbb = _("4-bbb", ["a", 1, 4])
ccc = _("5-ccc", ["a", 1, 4])
xxa = _("6-xxa", 1.24)
fff = _("7-fff", 1e-5)
ggg = _("8-ggg", 1 // 2)
hhh = _("9-hhh", print)
コード例 #13
0
ファイル: main.py プロジェクト: zilunzhang/hpargparse
def func():
    weight_decay = _("weight_decay", 1e-5)
    print("weight decay is {}".format(weight_decay))
コード例 #14
0
from hpman.m import _

_("str_from", "source_code")
コード例 #15
0
ファイル: main.py プロジェクト: zilunzhang/hpman
from hpman.m import _

# forward static parsing
_.parse_file(__file__)
print(_.get_value("learning_rate"))

# define hyperparameters
learning_rate = _("learning_rate", 1e-3)

# override default value
_.set_value("learning_rate", 1e-2)
print(_.get_value("learning_rate"))