コード例 #1
0
def test_Min_max(param, expected):
    '''
    Testing instantiate Min_Max model and test it against test cases
    '''
    my_ALPHA = hs.Alpha()
    A = hs.convert_matrix_to_cart(param[0]['A'])
    weight_const = param[0]['weight_const']
    A0 = [0]
    # It is acceptable to enter either direct_matrix or A,B,U matrices
    try:
        direct_matrix = hs.convert_matrix_to_cart(param[0]['ALPHA'])
        my_ALPHA.add(direct_matrix=direct_matrix)
    except KeyError:
        B = hs.convert_matrix_to_cart(param[0]['B'])
        U = hs.convert_matrix_to_cart(param[0]['U'])
        my_ALPHA.add(A=A, B=B, U=U)
    try:
         A0 = hs.convert_matrix_to_cart(param[0]['A0'])
    except KeyError:
        pass
    expected_W = hs.convert_matrix_to_cart(expected)

    my_model = hs.Min_max(A, my_ALPHA,
                             weight_const=weight_const,name='Min_max')  # Setting the model almost with no constraints
    W = my_model.solve()
    print((expected))
    print('Residual Vibration rmse calculated = ', my_model.rmse())
    print('Residual Vibration rmse from test_case = ',
          hs.rmse(hs.residual_vibration(my_ALPHA.value, expected_W, A)))
    print('expected_residual_vibration',
          hs.convert_matrix_to_math(my_model.expected_residual_vibration()))
    print('Correction weights', hs.convert_cart_math(W))
    # Constraint Minmax algorithm was slightly inefficient in CVXPY
    # The rmse was marginally more than the author solution
    np.testing.assert_allclose(W, expected_W, rtol=0.09) # allowance 9% error
コード例 #2
0
def test_WLS(param, expected):
    '''
    Testing instantiate LMI model and test it against test cases
    '''
    my_ALPHA = hs.Alpha()
    A = hs.convert_matrix_to_cart(param[0]['A'])
    A0 = [0]
    # It is acceptable to enter either direct_matrix or A,B,U matrices
    try:
        direct_matrix = hs.convert_matrix_to_cart(param[0]['ALPHA'])
        my_ALPHA.add(direct_matrix=direct_matrix)
    except KeyError:
        B = hs.convert_matrix_to_cart(param[0]['B'])
        U = hs.convert_matrix_to_cart(param[0]['U'])
        my_ALPHA.add(A=A, B=B, U=U)
    try:
        A0 = hs.convert_matrix_to_cart(param[0]['A0'])
    except KeyError:
        pass
    expected_W = hs.convert_matrix_to_cart(expected)
    my_model = hs.LeastSquares(A - A0, my_ALPHA, name='simple_least_square')
    W = my_model.solve(solver='WLS')
    print('Residual Vibration rmse calculated = ', my_model.rmse())
    print('Residual Vibration rmse from test_case = ',
          hs.rmse(hs.residual_vibration(my_ALPHA.value, expected_W, A)))
    print('expected_residual_vibration',
          hs.convert_matrix_to_math(my_model.expected_residual_vibration()))
    np.testing.assert_allclose(W, expected_W, rtol=0.05)  # allowance 5% error
コード例 #3
0
def test_big_matrix_LSQ(test_big_alpha, test_big_A, test_model_LSQ):
    '''
    Testing the perfromance of model
    '''
    start = time.time()
    error = hs.residual_vibration(test_big_alpha.value, test_model_LSQ,
                                  test_big_A)
    end = time.time()
    print(error.shape)
    print('Time elapsed = ', end - start)
    np.testing.assert_allclose(error, 0, atol=1e-5)
コード例 #4
0
 def test_performance(n):
     alpha = hs.Alpha()
     real = np.random.uniform(0, 10, [n, n])
     imag = np.random.uniform(0, 10, [n, n])
     alpha.add(real + imag * 1j)
     real = np.random.uniform(0, 10, [n, 1])
     imag = np.random.uniform(0, 10, [n, 1])
     A = real + imag * 1j
     start = time.time()
     w = hs.LeastSquares(A, alpha).solve()
     error = hs.residual_vibration(alpha.value, w, A)
     t = time.time() - start
     return round(t, 2)
コード例 #5
0
def test_LMI(param, expected):
    '''
    Testing insantiate Least square model and test it against test cases
    '''
    my_ALPHA = hs.Alpha()
    A = hs.convert_matrix_to_cart(param[0]['A'])
    weight_const = param[0]['weight_const']
    A0 = [0]
    # It is acceptable to enter either direct_matrix or A,B,U matrices
    try:
        direct_matrix = hs.convert_matrix_to_cart(param[0]['ALPHA'])
        my_ALPHA.add(direct_matrix=direct_matrix)
    except KeyError:
        B = hs.convert_matrix_to_cart(param[0]['B'])
        U = hs.convert_matrix_to_cart(param[0]['U'])
        my_ALPHA.add(A=A, B=B, U=U)
    try:
        A0 = hs.convert_matrix_to_cart(param[0]['A0'])
    except KeyError:
        pass
    expected_W = hs.convert_matrix_to_cart(expected)

    my_model = hs.LMI(A,
                      my_ALPHA,
                      weight_const=weight_const,
                      V_max=76,
                      critical_planes={1, 9},
                      name='LMI')
    W = my_model.solve()
    print('Residual Vibration rmse calculated = ', my_model.rmse())
    print('Residual Vibration rmse from test_case = ',
          hs.rmse(hs.residual_vibration(my_ALPHA.value, expected_W, A)))
    print('expected_residual_vibration',
          hs.convert_matrix_to_math(my_model.expected_residual_vibration()))
    print('Correction weights', hs.convert_cart_math(W))
    np.testing.assert_allclose(W, expected_W, rtol=0.05)  # allowance 5% error
import hsbalance as hs

A = [['170@112'],
     ['53@78']]  # --> Initial vibration conditions First Row in Table  above.
B = [
    [
        '235@94', '185@115'
    ],  # --> Vibration at sensor 1 when trial masses were added at plane 1&2 (First column for both trial runs)
    ['58@68', '77@104']
]  # Vibration at sensor 2 when trial masses were added at plane 1&2 (Second column for both trial runs)
U = ['1.15@0', '1.15@0']  # Trial masses 2.5 g at plane 1 and 2 consequently
A = hs.convert_math_cart(A)
B = hs.convert_math_cart(B)
U = hs.convert_math_cart(U)
alpha = hs.Alpha()  # Instantiate Alpha class
alpha.add(A=A, B=B, U=U)
model_LeastSquares = hs.LeastSquares(A=A, alpha=alpha)
w = model_LeastSquares.solve(
)  #  Solve the model and get the correction weights vector
# Calculate Residual vibration vector
residual_vibration = hs.residual_vibration(alpha.value, w, A)
# Caculate Root mean square error for model
RMSE = hs.rmse(residual_vibration)
# Convert w back into mathmatical expression
w = hs.convert_cart_math(w)
# print results
print(model_LeastSquares.info())