def bigcache_feat_load(cache_dir, uid, ext): #io.debug_smart_load(cache_dir, fname='*', uid=uid, ext='.*') kpts_list = io.smart_load(cache_dir, 'kpts_list', uid, ext, can_fail=True) desc_list = io.smart_load(cache_dir, 'desc_list', uid, ext, can_fail=True) if desc_list is None or kpts_list is None: return None desc_list = desc_list.tolist() kpts_list = kpts_list.tolist() print('[fc2] Loaded kpts_list and desc_list from big cache') return kpts_list, desc_list
def load_query_results(hs, qcx_list, force_load=False): query_cfg = hs.prefs.query_cfg # Build query big cache uid query_uid = query_cfg.get_uid() hs_uid = hs.get_db_name() qcxs_uid = helpers.hashstr(tuple(qcx_list)) qres_uid = hs_uid + query_uid + qcxs_uid cache_dir = join(hs.dirs.cache_dir, 'query_results_bigcache') print('\n===============') print('\n[rr2] Load Query Results') print('[rr2] load_query_results(): %r' % qres_uid) io_kwargs = dict(dpath=cache_dir, fname='query_results', uid=qres_uid, ext='.cPkl') # Return cache if available if not hs.args.nocache_query and (not force_load): qcx2_res = io.smart_load(**io_kwargs) if qcx2_res is not None: print('[rr2] load_query_results(): cache hit') return qcx2_res print('[rr2] load_query_results(): cache miss') else: print('[rr2] load_query_results(): cache off') # Individually load / compute queries qcx2_res = [hs.query(qcx) for qcx in qcx_list] # Save to the cache print('[rr2] Saving query_results to bigcache: %r' % qres_uid) helpers.ensuredir(cache_dir) io.smart_save(qcx2_res, **io_kwargs) return qcx2_res
def load_cached_test_results(hs, qreq, qcxs, dcxs, nocache_testres, test_results_verbosity): test_uid = qreq.get_query_uid(hs, qcxs) cache_dir = join(hs.dirs.cache_dir, 'experiment_harness_results') io_kwargs = { 'dpath': cache_dir, 'fname': 'test_results', 'uid': test_uid, 'ext': '.cPkl' } if test_results_verbosity == 2: print('[harn] test_uid = %r' % test_uid) # High level caching if not params.args.nocache_query and (not nocache_testres): qx2_bestranks = io.smart_load(**io_kwargs) if qx2_bestranks is None: print('[harn] qx2_bestranks cache returned None!') elif len(qx2_bestranks) != len(qcxs): print('[harn] Re-Caching qx2_bestranks') else: return qx2_bestranks
def precompute_akmeans(data, num_clusters, max_iters=100, flann_params=None, cache_dir=None, force_recomp=False, same_data=True, uid=''): 'precompute aproximate kmeans' if flann_params is None: flann_params = {} print('[algos] pre_akmeans()') if same_data: data_uid = helpers.hashstr_arr(data, 'dID') uid += data_uid clusters_fname = 'akmeans_clusters' datax2cl_fname = 'akmeans_datax2cl' try: if not force_recomp: clusters = io.smart_load(cache_dir, clusters_fname, uid, '.npy', can_fail=False) datax2_clusterx = io.smart_load(cache_dir, datax2cl_fname, uid, '.npy', can_fail=False) else: raise Exception('forcing') # Hack to refine akmeans with a few more iterations if '--refine' in sys.argv or '--refine-exit' in sys.argv: max_iters_override = helpers.get_arg('--refine', type_=int) print('Overriding max_iters=%r' % max_iters_override) if not max_iters_override is None: max_iters = max_iters_override datax2_clusterx_old = datax2_clusterx print('[algos] refining:') print('[algos] ' + '_'.join([clusters_fname, uid]) + '.npy') print('[algos] ' + '_'.join([datax2cl_fname, uid]) + '.npy') (datax2_clusterx, clusters) = __akmeans_iterate(data, clusters, datax2_clusterx_old, max_iters, flann_params, 0, 10) io.smart_save(clusters, cache_dir, clusters_fname, uid, '.npy') io.smart_save(datax2_clusterx, cache_dir, datax2cl_fname, uid, '.npy') if '--refine-exit' in sys.argv: print('exiting after refine') sys.exit(1) print('[algos] pre_akmeans(): ... loaded akmeans.') except Exception as ex: print('[algos] pre_akmeans(): ... could not load akmeans.') errstr = helpers.indent(repr(ex), '[algos] ') print('[algos] pre_akmeans(): ... caught ex:\n %s ' % errstr) print('[algos] pre_akmeans(): printing debug_smart_load') print('---- <DEBUG SMART LOAD>---') io.debug_smart_load(cache_dir, clusters_fname) io.debug_smart_load(cache_dir, datax2cl_fname) print('----</DEBUG SMART LOAD>---') #print('[algos] Press Ctrl+C to stop k-means early (and save)') #signal.signal(signal.SIGINT, force_quit_akmeans) # set ctrl+c behavior print('[algos] computing:') print('[algos] ' + '_'.join([clusters_fname, uid]) + '.npy') print('[algos] ' + '_'.join([datax2cl_fname, uid]) + '.npy') print('[algos] pre_akmeans(): calling akmeans') (datax2_clusterx, clusters) = akmeans(data, num_clusters, max_iters, flann_params) print('[algos] pre_akmeans(): finished running akmeans') io.smart_save(clusters, cache_dir, clusters_fname, uid, '.npy') io.smart_save(datax2_clusterx, cache_dir, datax2cl_fname, uid, '.npy') #print('[algos] Removing Ctrl+C signal handler') #signal.signal(signal.SIGINT, signal.SIG_DFL) # reset ctrl+c behavior print('[algos] pre_akmeans(): return') return (datax2_clusterx, clusters)
def get_test_results(hs, qcx_list, qdat, cfgx=0, nCfg=1, force_load=False): dcxs = hs.get_indexed_sample() query_uid = qdat.get_uid() print('[harn] get_test_results(): %r' % query_uid) hs_uid = hs.get_db_name() qcxs_uid = helpers.hashstr_arr(qcx_list) test_uid = hs_uid + query_uid + qcxs_uid cache_dir = join(hs.dirs.cache_dir, 'experiment_harness_results') io_kwargs = dict(dpath=cache_dir, fname='test_results', uid=test_uid, ext='.cPkl') # High level caching qx2_bestranks = [] #nChips = hs.get_num_chip() #nNames = len(hs.tables.nx2_name) - 2 nQuery = len(qcx_list) #NMultiNames = nPrevQ = nQuery * cfgx qx2_reslist = [] if not hs.args.nocache_query and (not force_load): test_results = io.smart_load(**io_kwargs) if test_results is None: pass elif len(test_results) != 1: print('recaching test_results') elif not test_results is None: return test_results, [[{0: None}]] * nQuery for qx, qcx in enumerate(qcx_list): print(textwrap.dedent(''' [harn]---------------- [harn] TEST %d/%d [harn]----------------''' % (qx + nPrevQ + 1, nQuery * nCfg))) gt_cxs = hs.get_other_indexed_cxs(qcx) #title = 'q' + hs.cidstr(qcx) + ' - ' + notes #print('[harn] title=%r' % (title,)) #print('[harn] gt_' + hs.cidstr(gt_cxs)) res_list = mc3.execute_query_safe(hs, qdat, [qcx], dcxs) bestranks = [] algos = [] qx2_reslist += [res_list] assert len(res_list) == 1 for qcx2_res in res_list: assert len(qcx2_res) == 1 res = qcx2_res[qcx] algos += [res.title] gt_ranks = res.get_gt_ranks(gt_cxs) #print('[harn] cx_ranks(/%4r) = %r' % (nChips, gt_ranks)) #print('[harn] cx_ranks(/%4r) = %r' % (NMultiNames, gt_ranks)) #print('ns_ranks(/%4r) = %r' % (nNames, gt_ranks)) if len(gt_ranks) == 0: _bestrank = -1 else: _bestrank = min(gt_ranks) bestranks += [_bestrank] # record metadata qx2_bestranks += [bestranks] mat_vals = np.array(qx2_bestranks) test_results = (mat_vals,) # High level caching helpers.ensuredir(cache_dir) io.smart_save(test_results, **io_kwargs) return test_results, qx2_reslist
def precompute_akmeans(data, num_clusters, max_iters=100, flann_params=None, cache_dir=None, force_recomp=False, same_data=True, uid=''): 'precompute aproximate kmeans' if flann_params is None: flann_params = {} print('[algos] pre_akmeans()') if same_data: data_uid = helpers.hashstr_arr(data, 'dID') uid += data_uid clusters_fname = 'akmeans_clusters' datax2cl_fname = 'akmeans_datax2cl' try: if not force_recomp: clusters = io.smart_load(cache_dir, clusters_fname, uid, '.npy', can_fail=False) datax2_clusterx = io.smart_load(cache_dir, datax2cl_fname, uid, '.npy', can_fail=False) else: raise Exception('forcing') # Hack to refine akmeans with a few more iterations if '--refine' in sys.argv or '--refine-exit' in sys.argv: max_iters_override = helpers.get_arg('--refine', type_=int) print('Overriding max_iters=%r' % max_iters_override) if not max_iters_override is None: max_iters = max_iters_override datax2_clusterx_old = datax2_clusterx print('[algos] refining:') print('[algos] ' + '_'.join([clusters_fname, uid]) + '.npy') print('[algos] ' + '_'.join([datax2cl_fname, uid]) + '.npy') (datax2_clusterx, clusters) = __akmeans_iterate( data, clusters, datax2_clusterx_old, max_iters, flann_params, 0, 10) io.smart_save(clusters, cache_dir, clusters_fname, uid, '.npy') io.smart_save(datax2_clusterx, cache_dir, datax2cl_fname, uid, '.npy') if '--refine-exit' in sys.argv: print('exiting after refine') sys.exit(1) print('[algos] pre_akmeans(): ... loaded akmeans.') except Exception as ex: print('[algos] pre_akmeans(): ... could not load akmeans.') errstr = helpers.indent(repr(ex), '[algos] ') print('[algos] pre_akmeans(): ... caught ex:\n %s ' % errstr) print('[algos] pre_akmeans(): printing debug_smart_load') print('---- <DEBUG SMART LOAD>---') io.debug_smart_load(cache_dir, clusters_fname) io.debug_smart_load(cache_dir, datax2cl_fname) print('----</DEBUG SMART LOAD>---') #print('[algos] Press Ctrl+C to stop k-means early (and save)') #signal.signal(signal.SIGINT, force_quit_akmeans) # set ctrl+c behavior print('[algos] computing:') print('[algos] ' + '_'.join([clusters_fname, uid]) + '.npy') print('[algos] ' + '_'.join([datax2cl_fname, uid]) + '.npy') print('[algos] pre_akmeans(): calling akmeans') (datax2_clusterx, clusters) = akmeans(data, num_clusters, max_iters, flann_params) print('[algos] pre_akmeans(): finished running akmeans') io.smart_save(clusters, cache_dir, clusters_fname, uid, '.npy') io.smart_save(datax2_clusterx, cache_dir, datax2cl_fname, uid, '.npy') #print('[algos] Removing Ctrl+C signal handler') #signal.signal(signal.SIGINT, signal.SIG_DFL) # reset ctrl+c behavior print('[algos] pre_akmeans(): return') return (datax2_clusterx, clusters)