コード例 #1
0
    def _chooseBestSegmentPerCell(self,
                                connections,
                                cells,
                                allMatchingSegments,
                                potentialOverlaps):
        """
        For each specified cell, choose its matching segment with largest number
        of active potential synapses. When there's a tie, the first segment wins.

        @param connections (SparseMatrixConnections)
        @param cells (numpy array)
        @param allMatchingSegments (numpy array)
        @param potentialOverlaps (numpy array)

        @return (numpy array)
        One segment per cell
        """

        candidateSegments = connections.filterSegmentsByCell(allMatchingSegments, cells)

        # Narrow it down to one pair per cell.
        onePerCellFilter = np2.argmaxMulti(potentialOverlaps[candidateSegments], connections.mapSegmentsToCells(candidateSegments))
        learningSegments = candidateSegments[onePerCellFilter]

        return learningSegments
コード例 #2
0
    def _sensoryComputeLearningMode(self, anchorInput):
        """
        Associate this location with a sensory input. Subsequently, anchorInput will
        activate the current location during anchor().

        @param anchorInput SDR
        A sensory input. This will often come from a feature-location pair layer.
        """
        overlaps,potentialOverlaps = self.connections.computeActivityFull(anchorInput, False)
        activeSegments = np.flatnonzero(overlaps >= self.activationThreshold)
        matchingSegments = np.flatnonzero(potentialOverlaps >= self.learningThreshold)

        # Cells with a active segment: reinforce the segment
        cellsForActiveSegments = self.connections.mapSegmentsToCells(activeSegments)
        learningActiveSegments = activeSegments[np.in1d(cellsForActiveSegments, self.getLearnableCells(), assume_unique=True)]
        remainingCells = np.setdiff1d(self.getLearnableCells(), cellsForActiveSegments, assume_unique=True)

        # Remaining cells with a matching segment: reinforce the best
        # matching segment.
        candidateSegments = self.connections.filterSegmentsByCell(matchingSegments, remainingCells)
        cellsForCandidateSegments = (self.connections.mapSegmentsToCells(candidateSegments))
        candidateSegments = candidateSegments[np.in1d(cellsForCandidateSegments, remainingCells, assume_unique=True)]
        onePerCellFilter = np2.argmaxMulti(potentialOverlaps[candidateSegments], cellsForCandidateSegments)
        learningMatchingSegments = candidateSegments[onePerCellFilter]

        newSegmentCells = np.setdiff1d(remainingCells, cellsForCandidateSegments, assume_unique=True)

        for learningSegments in (learningActiveSegments, learningMatchingSegments):
            self._learn(learningSegments, anchorInput, potentialOverlaps)

        # Remaining cells without a matching segment: grow one.
        self._learnOnNewSegments(newSegmentCells, anchorInput)

        self.activeSegments = activeSegments
        self.sensoryAssociatedCells = self.getLearnableCells()
コード例 #3
0
    def _chooseBestSegmentPerColumn(self, connections, matchingCells,
                                    allMatchingSegments, potentialOverlaps):
        """
        For all the columns covered by 'matchingCells', choose the column's matching
        segment with largest number of active potential synapses. When there's a
        tie, the first segment wins.

        @param connections (SparseMatrixConnections)
        @param matchingCells (numpy array)
        @param allMatchingSegments (numpy array)
        @param potentialOverlaps (numpy array)
        """

        candidateSegments = connections.filterSegmentsByCell(
            allMatchingSegments, matchingCells)

        # Narrow it down to one segment per column.
        cellScores = potentialOverlaps[candidateSegments]
        columnsForCandidates = (
            connections.mapSegmentsToCells(candidateSegments) //
            self.cellsPerColumn)
        onePerColumnFilter = np2.argmaxMulti(cellScores, columnsForCandidates)

        learningSegments = candidateSegments[onePerColumnFilter]

        return learningSegments