def testUnicode(self): testDocUni1 = [ "\u0395\u0396\u0397\u0398\u0399", "\u0400\u0401\u0402\u0403\u0404", "\u0405\u0406\u0407\u0408\u0409"] testDocUni2 = [ "\u0395\u0396\u0397\u0398\u0399\u0410", "\u0400\u0401\u0402\u0403\u0404\u0410", "\u0405\u0406\u0407\u0408\u0409\u0410"] params = SimHashDocumentEncoderParameters() params.size = 400 params.sparsity = 0.33 # unicode 'tokenSimilarity' ON params.tokenSimilarity = True encoder1 = SimHashDocumentEncoder(params) output1 = SDR(params.size) output2 = SDR(params.size) encoder1.encode(testDocUni1, output1) encoder1.encode(testDocUni2, output2) assert(output1.getOverlap(output2) > 65) # unicode 'tokenSimilarity' OFF params.tokenSimilarity = False encoder2 = SimHashDocumentEncoder(params) output1.zero() output2.zero() encoder2.encode(testDocUni1, output1) encoder2.encode(testDocUni2, output2) assert(output1.getOverlap(output2) < 65)
def testTokenSimilarity(self): params = SimHashDocumentEncoderParameters() params.size = 400 params.sparsity = 0.33 params.caseSensitivity = True # tokenSimilarity ON params.tokenSimilarity = True encoder1 = SimHashDocumentEncoder(params) output1 = SDR(params.size) output2 = SDR(params.size) output3 = SDR(params.size) output4 = SDR(params.size) encoder1.encode(testDoc1, output1) encoder1.encode(testDoc2, output2) encoder1.encode(testDoc3, output3) encoder1.encode(testDoc4, output4) assert(output3.getOverlap(output4) > output2.getOverlap(output3)) assert(output2.getOverlap(output3) > output1.getOverlap(output3)) assert(output1.getOverlap(output3) > output1.getOverlap(output4)) # tokenSimilarity OFF params.tokenSimilarity = False encoder2 = SimHashDocumentEncoder(params) output1.zero() output2.zero() output3.zero() output4.zero() encoder2.encode(testDoc1, output1) encoder2.encode(testDoc2, output2) encoder2.encode(testDoc3, output3) encoder2.encode(testDoc4, output4) assert(output1.getOverlap(output2) > output2.getOverlap(output3)) assert(output2.getOverlap(output3) > output3.getOverlap(output4)) assert(output3.getOverlap(output4) > output1.getOverlap(output3))
def testTokenWeightMap(self): weights = { "aaa": 4, "bbb": 2, "ccc": 2, "ddd": 4, "eee": 2, "fff": 2, "sss": 1} doc1 = ["aaa", "bbb", "ccc", "ddd", "sss"] doc2 = ["eee", "bbb", "ccc", "fff", "sss"] doc3 = ["aaa", "eee", "fff", "ddd"] params = SimHashDocumentEncoderParameters() params.size = 400 params.sparsity = 0.33 params.tokenSimilarity = False params.encodeOrphans = False params.vocabulary = weights encoder = SimHashDocumentEncoder(params) output1 = encoder.encode(doc1) output2 = encoder.encode(doc2) output3 = encoder.encode(doc3) assert(output1.getOverlap(output3) > output1.getOverlap(output2)) assert(output1.getOverlap(output2) > output2.getOverlap(output3))
def testFrequency(self): tokens = "a a a b b c d d d d e e f" # min 1 max 4 charTokens = "abbbbbbcccdefg aaaaaabccchijk aaabcccccclmno" # Test token frequency floor/ceiling params = SimHashDocumentEncoderParameters() params.size = 400 params.sparsity = 0.33 encoder1 = SimHashDocumentEncoder(params) output1 = encoder1.encode(tokens) params.frequencyFloor = 1 encoder2 = SimHashDocumentEncoder(params) output2 = encoder2.encode(tokens) params.frequencyFloor = 0 params.frequencyCeiling = 4 encoder3 = SimHashDocumentEncoder(params) output3 = encoder3.encode(tokens) assert(output1 != output2) assert(output1 != output3) assert(output2 != output3) # Test character frequency ceiling (only) params4 = SimHashDocumentEncoderParameters() params4.size = 400 params4.sparsity = 0.33 params4.tokenSimilarity = True encoder4 = SimHashDocumentEncoder(params4) output4 = encoder4.encode(charTokens) params4.frequencyCeiling = 3 encoder5 = SimHashDocumentEncoder(params4) output5 = encoder5.encode(charTokens) assert(output4 != output5)
def testStatistics(self): # 100 random simple English words run mass encoding stats against testCorpus = [ "find", "any", "new", "work", "part", "take", "get", "place", "made", "live", "where", "after", "back", "little", "only", "round", "man", "year", "came", "show", "every", "good", "me", "give", "our", "under", "name", "very", "through", "just", "form", "sentence", "great", "think", "say", "help", "low", "line", "differ", "turn", "cause", "much", "mean", "before", "move", "right", "boy", "old", "too", "same", "tell", "does", "set", "three", "want", "air", "well", "also", "play", "small", "end", "put", "home", "read", "hand", "port", "large", "spell", "add", "even", "land", "here", "must", "big", "high", "such", "follow", "act", "why", "ask", "men", "change", "went", "light", "kind", "off", "need", "house", "picture", "try", "us", "again", "animal", "point", "mother", "world", "near", "build", "self", "earth"] num_samples = 1000 # number of documents to run num_tokens = 10 # tokens per document # Case 1 = tokenSimilarity OFF params1 = SimHashDocumentEncoderParameters() params1.size = 400 params1.sparsity = 0.33 params1.tokenSimilarity = False encoder1 = SimHashDocumentEncoder(params1) # Case 2 = tokenSimilarity ON params2 = params1 params2.tokenSimilarity = True encoder2 = SimHashDocumentEncoder(params2) sdrs1 = [] sdrs2 = [] for _ in range(num_samples): document = [] for _ in range(num_tokens - 1): token = testCorpus[random.randint(0, len(testCorpus) - 1)] document.append(token) sdrs1.append(encoder1.encode(document)) sdrs2.append(encoder2.encode(document)) report1 = Metrics([encoder1.size], len(sdrs1) + 1) report2 = Metrics([encoder2.size], len(sdrs2) + 1) for sdr in sdrs1: report1.addData(sdr) for sdr in sdrs2: report2.addData(sdr) # Assertions for Case 1 = tokenSimilarity OFF assert(report1.activationFrequency.entropy() > 0.87) assert(report1.activationFrequency.min() > 0.01) assert(report1.activationFrequency.max() < 0.99) assert(report1.activationFrequency.mean() > params1.sparsity - 0.005) assert(report1.activationFrequency.mean() < params1.sparsity + 0.005) assert(report1.overlap.min() > 0.21) assert(report1.overlap.max() > 0.53) assert(report1.overlap.mean() > 0.38) assert(report1.sparsity.min() > params1.sparsity - 0.01) assert(report1.sparsity.max() < params1.sparsity + 0.01) assert(report1.sparsity.mean() > params1.sparsity - 0.005) assert(report1.sparsity.mean() < params1.sparsity + 0.005) # Assertions for Case 2 = tokenSimilarity ON assert(report2.activationFrequency.entropy() > 0.59) assert(report2.activationFrequency.min() >= 0) assert(report2.activationFrequency.max() <= 1) assert(report2.activationFrequency.mean() > params2.sparsity - 0.005) assert(report2.activationFrequency.mean() < params2.sparsity + 0.005) assert(report2.overlap.min() > 0.38) assert(report2.overlap.max() > 0.78) assert(report2.overlap.mean() > 0.61) assert(report2.sparsity.min() > params2.sparsity - 0.01) assert(report2.sparsity.max() < params2.sparsity + 0.01) assert(report2.sparsity.mean() > params2.sparsity - 0.005) assert(report2.sparsity.mean() < params2.sparsity + 0.005)