コード例 #1
0
ファイル: metricdistance.py プロジェクト: xielm12/htmd
    def project(self, *args, **kwargs):
        """ Project molecule.

        Parameters
        ----------
        mol : :class:`Molecule <htmd.molecule.molecule.Molecule>`
            A :class:`Molecule <htmd.molecule.molecule.Molecule>` object to project.

        Returns
        -------
        data : np.ndarray
            An array containing the projected data.
        """
        # -------------- DEPRECATION PATCH --------------
        if isinstance(self, np.ndarray) or isinstance(self, Molecule):
            from warnings import warn
            warn('Static use of the project method will be deprecated in the next version of HTMD. '
                 'Please change your projection code according to the tutorials on www.htmd.org')
            data = _MetricDistanceOld.project(self, *args, **kwargs)
            logger.warning('Static use of the project method will be deprecated in the next version of HTMD. '
                            'Please change your projection code according to the tutorials on www.htmd.org')
            return data
        # ------------------ CUT HERE -------------------
        mol = args[0]
        (sel1, sel2) = self._getSelections(mol)

        if np.ndim(sel1) == 1 and np.ndim(sel2) == 1:  # normal distances
            metric = pp_calcDistances(mol, sel1, sel2, self.metric, self.threshold, self.pbc, truncate=self.truncate)
        else:  # minimum distances by groups
            metric = pp_calcMinDistances(mol, sel1, sel2)

        return metric
コード例 #2
0
    def project(self, mol):
        """ Project molecule.

        Parameters
        ----------
        mol : :class:`Molecule <htmd.molecule.molecule.Molecule>`
            A :class:`Molecule <htmd.molecule.molecule.Molecule>` object to project.

        Returns
        -------
        data : np.ndarray
            An array containing the projected data.
        """
        (sel1, sel2) = self._getSelections(mol)

        if np.ndim(sel1) == 1 and np.ndim(sel2) == 1:  # normal distances
            metric = pp_calcDistances(mol,
                                      sel1,
                                      sel2,
                                      self.metric,
                                      self.threshold,
                                      self.pbc,
                                      truncate=self.truncate)
        else:  # minimum distances by groups
            metric = pp_calcMinDistances(mol,
                                         sel1,
                                         sel2,
                                         self.metric,
                                         self.threshold,
                                         pbc=self.pbc)

        return metric
コード例 #3
0
ファイル: metricdistance.py プロジェクト: xielm12/htmd
    def _processTraj(self, mol):
        (sel1, sel2) = self._getSelections(mol)

        if np.ndim(sel1) == 1 and np.ndim(sel2) == 1:  # normal distances
            metric = pp_calcDistances(mol, sel1, sel2, self.metric, self.threshold, self.pbc, truncate=self.truncate)
        else:  # minimum distances by groups
            metric = pp_calcMinDistances(mol, sel1, sel2)

        #if not issparse(metric) and not metric.dtype == 'bool' and np.any(np.isreal(metric)) and self.precision != 0:
        #    metric = np.round(metric * (1 / self.precision)) * self.precision
        return metric
コード例 #4
0
ファイル: metricdistance.py プロジェクト: jeiros/htmd
    def project(self, mol):
        """ Project molecule.

        Parameters
        ----------
        mol : :class:`Molecule <htmd.molecule.molecule.Molecule>`
            A :class:`Molecule <htmd.molecule.molecule.Molecule>` object to project.

        Returns
        -------
        data : np.ndarray
            An array containing the projected data.
        """
        (sel1, sel2) = self._getSelections(mol)

        if np.ndim(sel1) == 1 and np.ndim(sel2) == 1:  # normal distances
            metric = pp_calcDistances(mol, sel1, sel2, self.metric, self.threshold, self.pbc, truncate=self.truncate)
        else:  # minimum distances by groups
            metric = pp_calcMinDistances(mol, sel1, sel2, self.metric, self.threshold, pbc=self.pbc)

        return metric