def testModelInputRowConstructorFromSerializableState(self): rowID = 1 data = [1, 2, datetime.datetime.utcnow()] inputRow = ModelInputRow(rowID=rowID, data=copy.copy(data)) self.assertEqual(inputRow.rowID, rowID) self.assertEqual(inputRow.data, data) self.assertIn("ModelInputRow<", str(inputRow)) self.assertIn("ModelInputRow<", repr(inputRow)) inputRow2 = _ModelRequestResultBase.__createFromState__( inputRow.__getstate__()) self.assertEqual(inputRow2.rowID, rowID) self.assertEqual(inputRow2.data, data) self.assertIn("ModelInputRow<", str(inputRow2)) self.assertIn("ModelInputRow<", repr(inputRow2))
def _storeDataSamples(self, data, metricID, conn): """ Store the given metric data samples in metric_data table :param data: A sequence of data samples; each data sample is a pair: (datetime.datetime, float) :param metricID: unique metric id :param sqlalchemy.engine.Connection conn: A sqlalchemy connection object :returns: a (possibly empty) tuple of ModelInputRow objects corresponding to the samples that were stored; ordered by rowid. :rtype: tuple of model_swapper_interface.ModelInputRow objects """ if data: # repository.addMetricData expects samples as pairs of (value, timestamp) data = tuple((value, ts) for (ts, value) in data) # Save new metric data in metric table rows = repository.addMetricData(conn, metricID, data) # Update tail metric data timestamp cache for metrics stored by us self._tailInputMetricDataTimestamps[metricID] = rows[-1]["timestamp"] # Add newly-stored records to batch for sending to CLA model modelInputRows = tuple( ModelInputRow(rowID=row["rowid"], data=(timestamp, metricValue,)) for (metricValue, timestamp), row in itertools.izip_longest(data, rows)) else: modelInputRows = tuple() self._log.warning("_storeDataSamples called with empty data") return modelInputRows
def testModelSwapper(self): """Simple end-to-end test of the model swapper system.""" modelSchedulerSubprocess = self._startModelSchedulerSubprocess() self.addCleanup(lambda: modelSchedulerSubprocess.kill() if modelSchedulerSubprocess.returncode is None else None) modelID = "foobar" resultBatches = [] with ModelSwapperInterface() as swapperAPI: possibleModels = getScalarMetricWithTimeOfDayParams(metricData=[0], minVal=0, maxVal=1000) # Submit requests including a model creation command and two data rows. args = possibleModels[0] args["inputRecordSchema"] = ( FieldMetaInfo("c0", FieldMetaType.datetime, FieldMetaSpecial.timestamp), FieldMetaInfo("c1", FieldMetaType.float, FieldMetaSpecial.none), ) # Define the model _LOGGER.info("Defining the model") swapperAPI.defineModel(modelID=modelID, args=args, commandID="defineModelCmd1") # Attempt to define the same model again _LOGGER.info("Defining the model again") swapperAPI.defineModel(modelID=modelID, args=args, commandID="defineModelCmd2") # Send input rows to the model inputRows = [ ModelInputRow( rowID="rowfoo", data=[datetime.datetime(2013, 5, 23, 8, 13, 00), 5.3]), ModelInputRow( rowID="rowbar", data=[datetime.datetime(2013, 5, 23, 8, 13, 15), 2.4]), ] _LOGGER.info("Submitting batch of %d input rows...", len(inputRows)) swapperAPI.submitRequests(modelID=modelID, requests=inputRows) _LOGGER.info("These models have pending input: %s", swapperAPI.getModelsWithInputPending()) # Retrieve all results. # NOTE: We collect results via background thread to avoid # deadlocking the test runner in the event consuming blocks unexpectedly _LOGGER.info("Reading all batches of results...") numBatchesExpected = 3 resultBatches.extend( self._consumeResults(numBatchesExpected, timeout=20)) self.assertEqual(len(resultBatches), numBatchesExpected) with MessageBusConnector() as bus: # The results message queue should be empty now self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName)) # Delete the model _LOGGER.info("Deleting the model") swapperAPI.deleteModel(modelID=modelID, commandID="deleteModelCmd1") _LOGGER.info("Waiting for model deletion result") resultBatches.extend(self._consumeResults(1, timeout=20)) self.assertEqual(len(resultBatches), 4) with MessageBusConnector() as bus: # The results message queue should be empty now self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName)) # The model input queue should be deleted now self.assertFalse( bus.isMessageQeueuePresent( swapperAPI._getModelInputQName(modelID=modelID))) # Try deleting the model again, to make sure there are no exceptions _LOGGER.info("Attempting to delete the model again") swapperAPI.deleteModel(modelID=modelID, commandID="deleteModelCmd1") # Verify results # First result batch should be the first defineModel result batch = resultBatches[0] self.assertEqual(batch.modelID, modelID) self.assertEqual(len(batch.objects), 1) result = batch.objects[0] self.assertIsInstance(result, ModelCommandResult) self.assertEqual(result.method, "defineModel") self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.commandID, "defineModelCmd1") # The second result batch should for the second defineModel result for the # same model batch = resultBatches[1] self.assertEqual(batch.modelID, modelID) self.assertEqual(len(batch.objects), 1) result = batch.objects[0] self.assertIsInstance(result, ModelCommandResult) self.assertEqual(result.method, "defineModel") self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.commandID, "defineModelCmd2") # The third batch should be for the two input rows batch = resultBatches[2] self.assertEqual(batch.modelID, modelID) self.assertEqual(len(batch.objects), len(inputRows)) for inputRow, result in zip(inputRows, batch.objects): self.assertIsInstance(result, ModelInferenceResult) self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.rowID, inputRow.rowID) self.assertIsInstance(result.anomalyScore, float) # The fourth batch should be for the "deleteModel" batch = resultBatches[3] self.assertEqual(batch.modelID, modelID) self.assertEqual(len(batch.objects), 1) result = batch.objects[0] self.assertIsInstance(result, ModelCommandResult) self.assertEqual(result.method, "deleteModel") self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.commandID, "deleteModelCmd1") # Signal Model Scheduler Service subprocess to shut down and wait for it waitResult = dict() def runWaiterThread(): try: waitResult["returnCode"] = modelSchedulerSubprocess.wait() except: _LOGGER.exception( "Waiting for modelSchedulerSubprocess failed") waitResult["exceptionInfo"] = traceback.format_exc() raise return modelSchedulerSubprocess.terminate() waiterThread = threading.Thread(target=runWaiterThread) waiterThread.setDaemon(True) waiterThread.start() waiterThread.join(timeout=30) self.assertFalse(waiterThread.isAlive()) self.assertEqual(waitResult["returnCode"], 0, msg=repr(waitResult))
def _auxTestRunModelWithFullThenIncrementalCheckpoints( self, classifierEnabled): modelID = "foobar" checkpointMgr = model_checkpoint_mgr.ModelCheckpointMgr() args = getScalarMetricWithTimeOfDayAnomalyParams(metricData=[0], minVal=0, maxVal=1000) args["modelConfig"]["modelParams"]["clEnable"] = classifierEnabled # Submit requests including a model creation command and two data rows. args["inputRecordSchema"] = ( FieldMetaInfo("c0", FieldMetaType.datetime, FieldMetaSpecial.timestamp), FieldMetaInfo("c1", FieldMetaType.float, FieldMetaSpecial.none), ) with ModelSwapperInterface() as swapperAPI: # Define the model _LOGGER.info("Defining the model") swapperAPI.defineModel(modelID=modelID, args=args, commandID="defineModelCmd1") # Send input rows to the model inputRows = [ ModelInputRow( rowID="rowfoo", data=[datetime.datetime(2014, 5, 23, 8, 13, 00), 5.3]), ModelInputRow( rowID="rowbar", data=[datetime.datetime(2014, 5, 23, 8, 13, 15), 2.4]), ] _LOGGER.info( "Submitting batch of %d input rows with ids=[%s..%s]...", len(inputRows), inputRows[0].rowID, inputRows[-1].rowID) swapperAPI.submitRequests(modelID=modelID, requests=inputRows) # Run model_runner and collect results with self._startModelRunnerSubprocess( modelID) as modelRunnerProcess: resultBatches = self._consumeResults(numExpectedBatches=2, timeout=15) self._waitForProcessToStopAndCheck(modelRunnerProcess) with MessageBusConnector() as bus: # The results message queue should be empty now self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName)) self.assertEqual(len(resultBatches), 2, repr(resultBatches)) # First result batch should be the first defineModel result batch = resultBatches[0] self.assertEqual(batch.modelID, modelID) self.assertEqual(len(batch.objects), 1) result = batch.objects[0] self.assertIsInstance(result, ModelCommandResult) self.assertEqual(result.method, "defineModel") self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.commandID, "defineModelCmd1") # The second result batch should be for the two input rows batch = resultBatches[1] self.assertEqual(batch.modelID, modelID) self.assertEqual(len(batch.objects), len(inputRows)) for inputRow, result in zip(inputRows, batch.objects): self.assertIsInstance(result, ModelInferenceResult) self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.rowID, inputRow.rowID) self.assertIsInstance(result.anomalyScore, float) if classifierEnabled: self.assertIsInstance(result.multiStepBestPredictions, dict) else: self.assertIsNone(result.multiStepBestPredictions) # Verify model checkpoint model = checkpointMgr.load(modelID) del model attrs = checkpointMgr.loadCheckpointAttributes(modelID) self.assertIn( model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME, attrs, msg=repr(attrs)) self.assertEqual(len(attrs[ model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME]), 2, msg=repr(attrs)) self.assertNotIn(model_runner._ModelArchiver. _INPUT_SAMPLES_SINCE_CHECKPOINT_ATTR_NAME, attrs, msg=repr(attrs)) # Now, check incremental checkpointing inputRows2 = [ ModelInputRow( rowID=2, data=[datetime.datetime(2014, 5, 23, 8, 13, 20), 2.7]), ModelInputRow( rowID=3, data=[datetime.datetime(2014, 5, 23, 8, 13, 25), 3.9]), ] _LOGGER.info( "Submitting batch of %d input rows with ids=[%s..%s]...", len(inputRows2), inputRows2[0].rowID, inputRows2[-1].rowID) inputBatchID = swapperAPI.submitRequests(modelID=modelID, requests=inputRows2) with self._startModelRunnerSubprocess( modelID) as modelRunnerProcess: resultBatches = self._consumeResults(numExpectedBatches=1, timeout=15) self._waitForProcessToStopAndCheck(modelRunnerProcess) with MessageBusConnector() as bus: self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName)) batch = resultBatches[0] self.assertEqual(batch.modelID, modelID) self.assertEqual(len(batch.objects), len(inputRows2)) for inputRow, result in zip(inputRows2, batch.objects): self.assertIsInstance(result, ModelInferenceResult) self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.rowID, inputRow.rowID) self.assertIsInstance(result.anomalyScore, float) if classifierEnabled: self.assertIsInstance(result.multiStepBestPredictions, dict) else: self.assertIsNone(result.multiStepBestPredictions) model = checkpointMgr.load(modelID) del model attrs = checkpointMgr.loadCheckpointAttributes(modelID) self.assertIn( model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME, attrs, msg=repr(attrs)) self.assertSequenceEqual(attrs[ model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME], [inputBatchID], msg=repr(attrs)) self.assertIn(model_runner._ModelArchiver. _INPUT_SAMPLES_SINCE_CHECKPOINT_ATTR_NAME, attrs, msg=repr(attrs)) self.assertSequenceEqual( model_runner._ModelArchiver._decodeDataSamples( attrs[model_runner._ModelArchiver. _INPUT_SAMPLES_SINCE_CHECKPOINT_ATTR_NAME]), [row.data for row in inputRows2], msg=repr(attrs)) # Final run with incremental checkpointing inputRows3 = [ ModelInputRow( rowID=4, data=[datetime.datetime(2014, 5, 23, 8, 13, 30), 4.7]), ModelInputRow( rowID=5, data=[datetime.datetime(2014, 5, 23, 8, 13, 35), 5.9]), ] _LOGGER.info( "Submitting batch of %d input rows with ids=[%s..%s]...", len(inputRows3), inputRows3[0].rowID, inputRows3[-1].rowID) inputBatchID = swapperAPI.submitRequests(modelID=modelID, requests=inputRows3) with self._startModelRunnerSubprocess( modelID) as modelRunnerProcess: resultBatches = self._consumeResults(numExpectedBatches=1, timeout=15) self._waitForProcessToStopAndCheck(modelRunnerProcess) with MessageBusConnector() as bus: self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName)) batch = resultBatches[0] self.assertEqual(batch.modelID, modelID) self.assertEqual(len(batch.objects), len(inputRows3)) for inputRow, result in zip(inputRows3, batch.objects): self.assertIsInstance(result, ModelInferenceResult) self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.rowID, inputRow.rowID) self.assertIsInstance(result.anomalyScore, float) if classifierEnabled: self.assertIsInstance(result.multiStepBestPredictions, dict) else: self.assertIsNone(result.multiStepBestPredictions) model = checkpointMgr.load(modelID) del model attrs = checkpointMgr.loadCheckpointAttributes(modelID) self.assertIn( model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME, attrs, msg=repr(attrs)) self.assertSequenceEqual(attrs[ model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME], [inputBatchID], msg=repr(attrs)) self.assertIn(model_runner._ModelArchiver. _INPUT_SAMPLES_SINCE_CHECKPOINT_ATTR_NAME, attrs, msg=repr(attrs)) self.assertSequenceEqual( model_runner._ModelArchiver._decodeDataSamples( attrs[model_runner._ModelArchiver. _INPUT_SAMPLES_SINCE_CHECKPOINT_ATTR_NAME]), [row.data for row in itertools.chain(inputRows2, inputRows3)], msg=repr(attrs)) # Delete the model _LOGGER.info("Deleting the model=%s", modelID) swapperAPI.deleteModel(modelID=modelID, commandID="deleteModelCmd1") with self._startModelRunnerSubprocess( modelID) as modelRunnerProcess: resultBatches = self._consumeResults(numExpectedBatches=1, timeout=15) self._waitForProcessToStopAndCheck(modelRunnerProcess) self.assertEqual(len(resultBatches), 1, repr(resultBatches)) # First result batch should be the first defineModel result batch = resultBatches[0] self.assertEqual(batch.modelID, modelID) self.assertEqual(len(batch.objects), 1) result = batch.objects[0] self.assertIsInstance(result, ModelCommandResult) self.assertEqual(result.method, "deleteModel") self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.commandID, "deleteModelCmd1") with MessageBusConnector() as bus: self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName)) # The model input queue should be deleted now self.assertFalse( bus.isMessageQeueuePresent( swapperAPI._getModelInputQName(modelID=modelID))) # The model checkpoint should be gone too with self.assertRaises(model_checkpoint_mgr.ModelNotFound): checkpointMgr.load(modelID) with self.assertRaises(model_checkpoint_mgr.ModelNotFound): checkpointMgr.loadModelDefinition(modelID) with self.assertRaises(model_checkpoint_mgr.ModelNotFound): checkpointMgr.loadCheckpointAttributes(modelID) with self.assertRaises(model_checkpoint_mgr.ModelNotFound): checkpointMgr.remove(modelID)
def testCloneModel(self): modelSchedulerSubprocess = self._startModelSchedulerSubprocess() self.addCleanup(lambda: modelSchedulerSubprocess.kill() if modelSchedulerSubprocess.returncode is None else None) modelID = "abc" destModelID = "def" resultBatches = [] with ModelSwapperInterface() as swapperAPI: args = getScalarMetricWithTimeOfDayAnomalyParams(metricData=[0], minVal=0, maxVal=1000) # Submit requests including a model creation command and two data rows. args["inputRecordSchema"] = ( FieldMetaInfo("c0", FieldMetaType.datetime, FieldMetaSpecial.timestamp), FieldMetaInfo("c1", FieldMetaType.float, FieldMetaSpecial.none), ) # Define the model _LOGGER.info("Defining the model") swapperAPI.defineModel(modelID=modelID, args=args, commandID="defineModelCmd1") resultBatches.extend(self._consumeResults(1, timeout=20)) self.assertEqual(len(resultBatches), 1) # Clone the just-defined model _LOGGER.info("Cloning model") swapperAPI.cloneModel(modelID, destModelID, commandID="cloneModelCmd1") resultBatches.extend(self._consumeResults(1, timeout=20)) self.assertEqual(len(resultBatches), 2) # Send input rows to the clone inputRows = [ ModelInputRow( rowID="rowfoo", data=[datetime.datetime(2013, 5, 23, 8, 13, 00), 5.3]), ModelInputRow( rowID="rowbar", data=[datetime.datetime(2013, 5, 23, 8, 13, 15), 2.4]), ] _LOGGER.info("Submitting batch of %d input rows...", len(inputRows)) swapperAPI.submitRequests(modelID=destModelID, requests=inputRows) _LOGGER.info("These models have pending input: %s", swapperAPI.getModelsWithInputPending()) resultBatches.extend(self._consumeResults(1, timeout=20)) self.assertEqual(len(resultBatches), 3) with MessageBusConnector() as bus: # The results message queue should be empty now self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName)) # Delete the model _LOGGER.info("Deleting the model") swapperAPI.deleteModel(modelID=destModelID, commandID="deleteModelCmd1") _LOGGER.info("Waiting for model deletion result") resultBatches.extend(self._consumeResults(1, timeout=20)) self.assertEqual(len(resultBatches), 4) with MessageBusConnector() as bus: # The results message queue should be empty now self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName)) # The model input queue should be deleted now self.assertFalse( bus.isMessageQeueuePresent( swapperAPI._getModelInputQName(modelID=destModelID))) # Verify results # First result batch should be the defineModel result batch = resultBatches[0] self.assertEqual(batch.modelID, modelID) self.assertEqual(len(batch.objects), 1) result = batch.objects[0] self.assertIsInstance(result, ModelCommandResult) self.assertEqual(result.method, "defineModel") self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.commandID, "defineModelCmd1") # The second result batch should for the cloneModel result batch = resultBatches[1] self.assertEqual(batch.modelID, modelID) self.assertEqual(len(batch.objects), 1) result = batch.objects[0] self.assertIsInstance(result, ModelCommandResult) self.assertEqual(result.method, "cloneModel") self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.commandID, "cloneModelCmd1") # The third batch should be for the two input rows batch = resultBatches[2] self.assertEqual(batch.modelID, destModelID) self.assertEqual(len(batch.objects), len(inputRows)) for inputRow, result in zip(inputRows, batch.objects): self.assertIsInstance(result, ModelInferenceResult) self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.rowID, inputRow.rowID) self.assertIsInstance(result.anomalyScore, float) self.assertIsInstance(result.multiStepBestPredictions, dict) # The fourth batch should be for the "deleteModel" batch = resultBatches[3] self.assertEqual(batch.modelID, destModelID) self.assertEqual(len(batch.objects), 1) result = batch.objects[0] self.assertIsInstance(result, ModelCommandResult) self.assertEqual(result.method, "deleteModel") self.assertEqual(result.status, htmengineerrno.SUCCESS) self.assertEqual(result.commandID, "deleteModelCmd1") # Signal Model Scheduler Service subprocess to shut down and wait for it waitResult = dict() def runWaiterThread(): try: waitResult["returnCode"] = modelSchedulerSubprocess.wait() except: _LOGGER.exception( "Waiting for modelSchedulerSubprocess failed") waitResult["exceptionInfo"] = traceback.format_exc() raise return modelSchedulerSubprocess.terminate() waiterThread = threading.Thread(target=runWaiterThread) waiterThread.setDaemon(True) waiterThread.start() waiterThread.join(timeout=30) self.assertFalse(waiterThread.isAlive()) self.assertEqual(waitResult["returnCode"], 0, msg=repr(waitResult))