コード例 #1
0
  def testModelInputRowConstructorFromSerializableState(self):
    rowID = 1
    data = [1, 2, datetime.datetime.utcnow()]
    inputRow = ModelInputRow(rowID=rowID, data=copy.copy(data))
    self.assertEqual(inputRow.rowID, rowID)
    self.assertEqual(inputRow.data, data)
    self.assertIn("ModelInputRow<", str(inputRow))
    self.assertIn("ModelInputRow<", repr(inputRow))

    inputRow2 = _ModelRequestResultBase.__createFromState__(
      inputRow.__getstate__())

    self.assertEqual(inputRow2.rowID, rowID)
    self.assertEqual(inputRow2.data, data)
    self.assertIn("ModelInputRow<", str(inputRow2))
    self.assertIn("ModelInputRow<", repr(inputRow2))
コード例 #2
0
  def _storeDataSamples(self, data, metricID, conn):
    """ Store the given metric data samples in metric_data table
    :param data: A sequence of data samples; each data sample is a pair:
                  (datetime.datetime, float)
    :param metricID: unique metric id
    :param sqlalchemy.engine.Connection conn: A sqlalchemy connection object

    :returns: a (possibly empty) tuple of ModelInputRow objects corresponding
        to the samples that were stored; ordered by rowid.
    :rtype: tuple of model_swapper_interface.ModelInputRow objects
    """

    if data:
      # repository.addMetricData expects samples as pairs of (value, timestamp)
      data = tuple((value, ts) for (ts, value) in data)

      # Save new metric data in metric table
      rows = repository.addMetricData(conn, metricID, data)

      # Update tail metric data timestamp cache for metrics stored by us
      self._tailInputMetricDataTimestamps[metricID] = rows[-1]["timestamp"]

      # Add newly-stored records to batch for sending to CLA model
      modelInputRows = tuple(
        ModelInputRow(rowID=row["rowid"], data=(timestamp, metricValue,))
        for (metricValue, timestamp), row
        in itertools.izip_longest(data, rows))
    else:
      modelInputRows = tuple()
      self._log.warning("_storeDataSamples called with empty data")

    return modelInputRows
コード例 #3
0
    def testModelSwapper(self):
        """Simple end-to-end test of the model swapper system."""

        modelSchedulerSubprocess = self._startModelSchedulerSubprocess()
        self.addCleanup(lambda: modelSchedulerSubprocess.kill() if
                        modelSchedulerSubprocess.returncode is None else None)

        modelID = "foobar"
        resultBatches = []

        with ModelSwapperInterface() as swapperAPI:
            possibleModels = getScalarMetricWithTimeOfDayParams(metricData=[0],
                                                                minVal=0,
                                                                maxVal=1000)

            # Submit requests including a model creation command and two data rows.
            args = possibleModels[0]
            args["inputRecordSchema"] = (
                FieldMetaInfo("c0", FieldMetaType.datetime,
                              FieldMetaSpecial.timestamp),
                FieldMetaInfo("c1", FieldMetaType.float,
                              FieldMetaSpecial.none),
            )

            # Define the model
            _LOGGER.info("Defining the model")
            swapperAPI.defineModel(modelID=modelID,
                                   args=args,
                                   commandID="defineModelCmd1")

            # Attempt to define the same model again
            _LOGGER.info("Defining the model again")
            swapperAPI.defineModel(modelID=modelID,
                                   args=args,
                                   commandID="defineModelCmd2")

            # Send input rows to the model
            inputRows = [
                ModelInputRow(
                    rowID="rowfoo",
                    data=[datetime.datetime(2013, 5, 23, 8, 13, 00), 5.3]),
                ModelInputRow(
                    rowID="rowbar",
                    data=[datetime.datetime(2013, 5, 23, 8, 13, 15), 2.4]),
            ]
            _LOGGER.info("Submitting batch of %d input rows...",
                         len(inputRows))
            swapperAPI.submitRequests(modelID=modelID, requests=inputRows)

            _LOGGER.info("These models have pending input: %s",
                         swapperAPI.getModelsWithInputPending())

            # Retrieve all results.
            # NOTE: We collect results via background thread to avoid
            # deadlocking the test runner in the event consuming blocks unexpectedly
            _LOGGER.info("Reading all batches of results...")

            numBatchesExpected = 3
            resultBatches.extend(
                self._consumeResults(numBatchesExpected, timeout=20))

            self.assertEqual(len(resultBatches), numBatchesExpected)

            with MessageBusConnector() as bus:
                # The results message queue should be empty now
                self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName))

            # Delete the model
            _LOGGER.info("Deleting the model")
            swapperAPI.deleteModel(modelID=modelID,
                                   commandID="deleteModelCmd1")

            _LOGGER.info("Waiting for model deletion result")
            resultBatches.extend(self._consumeResults(1, timeout=20))

            self.assertEqual(len(resultBatches), 4)

            with MessageBusConnector() as bus:
                # The results message queue should be empty now
                self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName))

                # The model input queue should be deleted now
                self.assertFalse(
                    bus.isMessageQeueuePresent(
                        swapperAPI._getModelInputQName(modelID=modelID)))

            # Try deleting the model again, to make sure there are no exceptions
            _LOGGER.info("Attempting to delete the model again")
            swapperAPI.deleteModel(modelID=modelID,
                                   commandID="deleteModelCmd1")

        # Verify results

        # First result batch should be the first defineModel result
        batch = resultBatches[0]
        self.assertEqual(batch.modelID, modelID)
        self.assertEqual(len(batch.objects), 1)

        result = batch.objects[0]
        self.assertIsInstance(result, ModelCommandResult)
        self.assertEqual(result.method, "defineModel")
        self.assertEqual(result.status, htmengineerrno.SUCCESS)
        self.assertEqual(result.commandID, "defineModelCmd1")

        # The second result batch should for the second defineModel result for the
        # same model
        batch = resultBatches[1]
        self.assertEqual(batch.modelID, modelID)
        self.assertEqual(len(batch.objects), 1)

        result = batch.objects[0]
        self.assertIsInstance(result, ModelCommandResult)
        self.assertEqual(result.method, "defineModel")
        self.assertEqual(result.status, htmengineerrno.SUCCESS)
        self.assertEqual(result.commandID, "defineModelCmd2")

        # The third batch should be for the two input rows
        batch = resultBatches[2]
        self.assertEqual(batch.modelID, modelID)
        self.assertEqual(len(batch.objects), len(inputRows))

        for inputRow, result in zip(inputRows, batch.objects):
            self.assertIsInstance(result, ModelInferenceResult)
            self.assertEqual(result.status, htmengineerrno.SUCCESS)
            self.assertEqual(result.rowID, inputRow.rowID)
            self.assertIsInstance(result.anomalyScore, float)

        # The fourth batch should be for the "deleteModel"
        batch = resultBatches[3]
        self.assertEqual(batch.modelID, modelID)
        self.assertEqual(len(batch.objects), 1)

        result = batch.objects[0]
        self.assertIsInstance(result, ModelCommandResult)
        self.assertEqual(result.method, "deleteModel")
        self.assertEqual(result.status, htmengineerrno.SUCCESS)
        self.assertEqual(result.commandID, "deleteModelCmd1")

        # Signal Model Scheduler Service subprocess to shut down and wait for it
        waitResult = dict()

        def runWaiterThread():
            try:
                waitResult["returnCode"] = modelSchedulerSubprocess.wait()
            except:
                _LOGGER.exception(
                    "Waiting for modelSchedulerSubprocess failed")
                waitResult["exceptionInfo"] = traceback.format_exc()
                raise
            return

        modelSchedulerSubprocess.terminate()
        waiterThread = threading.Thread(target=runWaiterThread)
        waiterThread.setDaemon(True)
        waiterThread.start()
        waiterThread.join(timeout=30)
        self.assertFalse(waiterThread.isAlive())

        self.assertEqual(waitResult["returnCode"], 0, msg=repr(waitResult))
コード例 #4
0
    def _auxTestRunModelWithFullThenIncrementalCheckpoints(
            self, classifierEnabled):
        modelID = "foobar"
        checkpointMgr = model_checkpoint_mgr.ModelCheckpointMgr()

        args = getScalarMetricWithTimeOfDayAnomalyParams(metricData=[0],
                                                         minVal=0,
                                                         maxVal=1000)

        args["modelConfig"]["modelParams"]["clEnable"] = classifierEnabled

        # Submit requests including a model creation command and two data rows.
        args["inputRecordSchema"] = (
            FieldMetaInfo("c0", FieldMetaType.datetime,
                          FieldMetaSpecial.timestamp),
            FieldMetaInfo("c1", FieldMetaType.float, FieldMetaSpecial.none),
        )

        with ModelSwapperInterface() as swapperAPI:
            # Define the model
            _LOGGER.info("Defining the model")
            swapperAPI.defineModel(modelID=modelID,
                                   args=args,
                                   commandID="defineModelCmd1")
            # Send input rows to the model
            inputRows = [
                ModelInputRow(
                    rowID="rowfoo",
                    data=[datetime.datetime(2014, 5, 23, 8, 13, 00), 5.3]),
                ModelInputRow(
                    rowID="rowbar",
                    data=[datetime.datetime(2014, 5, 23, 8, 13, 15), 2.4]),
            ]
            _LOGGER.info(
                "Submitting batch of %d input rows with ids=[%s..%s]...",
                len(inputRows), inputRows[0].rowID, inputRows[-1].rowID)
            swapperAPI.submitRequests(modelID=modelID, requests=inputRows)
            # Run model_runner and collect results
            with self._startModelRunnerSubprocess(
                    modelID) as modelRunnerProcess:
                resultBatches = self._consumeResults(numExpectedBatches=2,
                                                     timeout=15)
                self._waitForProcessToStopAndCheck(modelRunnerProcess)
            with MessageBusConnector() as bus:
                # The results message queue should be empty now
                self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName))
            self.assertEqual(len(resultBatches), 2, repr(resultBatches))
            # First result batch should be the first defineModel result
            batch = resultBatches[0]
            self.assertEqual(batch.modelID, modelID)
            self.assertEqual(len(batch.objects), 1)
            result = batch.objects[0]
            self.assertIsInstance(result, ModelCommandResult)
            self.assertEqual(result.method, "defineModel")
            self.assertEqual(result.status, htmengineerrno.SUCCESS)
            self.assertEqual(result.commandID, "defineModelCmd1")
            # The second result batch should be for the two input rows
            batch = resultBatches[1]
            self.assertEqual(batch.modelID, modelID)
            self.assertEqual(len(batch.objects), len(inputRows))
            for inputRow, result in zip(inputRows, batch.objects):
                self.assertIsInstance(result, ModelInferenceResult)
                self.assertEqual(result.status, htmengineerrno.SUCCESS)
                self.assertEqual(result.rowID, inputRow.rowID)
                self.assertIsInstance(result.anomalyScore, float)
                if classifierEnabled:
                    self.assertIsInstance(result.multiStepBestPredictions,
                                          dict)
                else:
                    self.assertIsNone(result.multiStepBestPredictions)

            # Verify model checkpoint
            model = checkpointMgr.load(modelID)
            del model
            attrs = checkpointMgr.loadCheckpointAttributes(modelID)
            self.assertIn(
                model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME,
                attrs,
                msg=repr(attrs))
            self.assertEqual(len(attrs[
                model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME]),
                             2,
                             msg=repr(attrs))
            self.assertNotIn(model_runner._ModelArchiver.
                             _INPUT_SAMPLES_SINCE_CHECKPOINT_ATTR_NAME,
                             attrs,
                             msg=repr(attrs))
            # Now, check incremental checkpointing
            inputRows2 = [
                ModelInputRow(
                    rowID=2,
                    data=[datetime.datetime(2014, 5, 23, 8, 13, 20), 2.7]),
                ModelInputRow(
                    rowID=3,
                    data=[datetime.datetime(2014, 5, 23, 8, 13, 25), 3.9]),
            ]
            _LOGGER.info(
                "Submitting batch of %d input rows with ids=[%s..%s]...",
                len(inputRows2), inputRows2[0].rowID, inputRows2[-1].rowID)
            inputBatchID = swapperAPI.submitRequests(modelID=modelID,
                                                     requests=inputRows2)
            with self._startModelRunnerSubprocess(
                    modelID) as modelRunnerProcess:
                resultBatches = self._consumeResults(numExpectedBatches=1,
                                                     timeout=15)
                self._waitForProcessToStopAndCheck(modelRunnerProcess)
            with MessageBusConnector() as bus:
                self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName))
            batch = resultBatches[0]
            self.assertEqual(batch.modelID, modelID)
            self.assertEqual(len(batch.objects), len(inputRows2))
            for inputRow, result in zip(inputRows2, batch.objects):
                self.assertIsInstance(result, ModelInferenceResult)
                self.assertEqual(result.status, htmengineerrno.SUCCESS)
                self.assertEqual(result.rowID, inputRow.rowID)
                self.assertIsInstance(result.anomalyScore, float)
                if classifierEnabled:
                    self.assertIsInstance(result.multiStepBestPredictions,
                                          dict)
                else:
                    self.assertIsNone(result.multiStepBestPredictions)

            model = checkpointMgr.load(modelID)
            del model
            attrs = checkpointMgr.loadCheckpointAttributes(modelID)
            self.assertIn(
                model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME,
                attrs,
                msg=repr(attrs))
            self.assertSequenceEqual(attrs[
                model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME],
                                     [inputBatchID],
                                     msg=repr(attrs))
            self.assertIn(model_runner._ModelArchiver.
                          _INPUT_SAMPLES_SINCE_CHECKPOINT_ATTR_NAME,
                          attrs,
                          msg=repr(attrs))
            self.assertSequenceEqual(
                model_runner._ModelArchiver._decodeDataSamples(
                    attrs[model_runner._ModelArchiver.
                          _INPUT_SAMPLES_SINCE_CHECKPOINT_ATTR_NAME]),
                [row.data for row in inputRows2],
                msg=repr(attrs))
            # Final run with incremental checkpointing
            inputRows3 = [
                ModelInputRow(
                    rowID=4,
                    data=[datetime.datetime(2014, 5, 23, 8, 13, 30), 4.7]),
                ModelInputRow(
                    rowID=5,
                    data=[datetime.datetime(2014, 5, 23, 8, 13, 35), 5.9]),
            ]
            _LOGGER.info(
                "Submitting batch of %d input rows with ids=[%s..%s]...",
                len(inputRows3), inputRows3[0].rowID, inputRows3[-1].rowID)
            inputBatchID = swapperAPI.submitRequests(modelID=modelID,
                                                     requests=inputRows3)
            with self._startModelRunnerSubprocess(
                    modelID) as modelRunnerProcess:
                resultBatches = self._consumeResults(numExpectedBatches=1,
                                                     timeout=15)
                self._waitForProcessToStopAndCheck(modelRunnerProcess)
            with MessageBusConnector() as bus:
                self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName))
            batch = resultBatches[0]
            self.assertEqual(batch.modelID, modelID)
            self.assertEqual(len(batch.objects), len(inputRows3))
            for inputRow, result in zip(inputRows3, batch.objects):
                self.assertIsInstance(result, ModelInferenceResult)
                self.assertEqual(result.status, htmengineerrno.SUCCESS)
                self.assertEqual(result.rowID, inputRow.rowID)
                self.assertIsInstance(result.anomalyScore, float)
                if classifierEnabled:
                    self.assertIsInstance(result.multiStepBestPredictions,
                                          dict)
                else:
                    self.assertIsNone(result.multiStepBestPredictions)

            model = checkpointMgr.load(modelID)
            del model
            attrs = checkpointMgr.loadCheckpointAttributes(modelID)
            self.assertIn(
                model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME,
                attrs,
                msg=repr(attrs))
            self.assertSequenceEqual(attrs[
                model_runner._ModelArchiver._BATCH_IDS_CHECKPOINT_ATTR_NAME],
                                     [inputBatchID],
                                     msg=repr(attrs))
            self.assertIn(model_runner._ModelArchiver.
                          _INPUT_SAMPLES_SINCE_CHECKPOINT_ATTR_NAME,
                          attrs,
                          msg=repr(attrs))
            self.assertSequenceEqual(
                model_runner._ModelArchiver._decodeDataSamples(
                    attrs[model_runner._ModelArchiver.
                          _INPUT_SAMPLES_SINCE_CHECKPOINT_ATTR_NAME]),
                [row.data for row in itertools.chain(inputRows2, inputRows3)],
                msg=repr(attrs))
            # Delete the model
            _LOGGER.info("Deleting the model=%s", modelID)
            swapperAPI.deleteModel(modelID=modelID,
                                   commandID="deleteModelCmd1")
            with self._startModelRunnerSubprocess(
                    modelID) as modelRunnerProcess:
                resultBatches = self._consumeResults(numExpectedBatches=1,
                                                     timeout=15)
                self._waitForProcessToStopAndCheck(modelRunnerProcess)
            self.assertEqual(len(resultBatches), 1, repr(resultBatches))
            # First result batch should be the first defineModel result
            batch = resultBatches[0]
            self.assertEqual(batch.modelID, modelID)
            self.assertEqual(len(batch.objects), 1)
            result = batch.objects[0]
            self.assertIsInstance(result, ModelCommandResult)
            self.assertEqual(result.method, "deleteModel")
            self.assertEqual(result.status, htmengineerrno.SUCCESS)
            self.assertEqual(result.commandID, "deleteModelCmd1")
            with MessageBusConnector() as bus:
                self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName))

                # The model input queue should be deleted now
                self.assertFalse(
                    bus.isMessageQeueuePresent(
                        swapperAPI._getModelInputQName(modelID=modelID)))

            # The model checkpoint should be gone too
            with self.assertRaises(model_checkpoint_mgr.ModelNotFound):
                checkpointMgr.load(modelID)
            with self.assertRaises(model_checkpoint_mgr.ModelNotFound):
                checkpointMgr.loadModelDefinition(modelID)
            with self.assertRaises(model_checkpoint_mgr.ModelNotFound):
                checkpointMgr.loadCheckpointAttributes(modelID)
            with self.assertRaises(model_checkpoint_mgr.ModelNotFound):
                checkpointMgr.remove(modelID)
コード例 #5
0
    def testCloneModel(self):

        modelSchedulerSubprocess = self._startModelSchedulerSubprocess()
        self.addCleanup(lambda: modelSchedulerSubprocess.kill() if
                        modelSchedulerSubprocess.returncode is None else None)

        modelID = "abc"
        destModelID = "def"

        resultBatches = []

        with ModelSwapperInterface() as swapperAPI:
            args = getScalarMetricWithTimeOfDayAnomalyParams(metricData=[0],
                                                             minVal=0,
                                                             maxVal=1000)

            # Submit requests including a model creation command and two data rows.
            args["inputRecordSchema"] = (
                FieldMetaInfo("c0", FieldMetaType.datetime,
                              FieldMetaSpecial.timestamp),
                FieldMetaInfo("c1", FieldMetaType.float,
                              FieldMetaSpecial.none),
            )

            # Define the model
            _LOGGER.info("Defining the model")
            swapperAPI.defineModel(modelID=modelID,
                                   args=args,
                                   commandID="defineModelCmd1")

            resultBatches.extend(self._consumeResults(1, timeout=20))
            self.assertEqual(len(resultBatches), 1)

            # Clone the just-defined model
            _LOGGER.info("Cloning model")
            swapperAPI.cloneModel(modelID,
                                  destModelID,
                                  commandID="cloneModelCmd1")

            resultBatches.extend(self._consumeResults(1, timeout=20))
            self.assertEqual(len(resultBatches), 2)

            # Send input rows to the clone
            inputRows = [
                ModelInputRow(
                    rowID="rowfoo",
                    data=[datetime.datetime(2013, 5, 23, 8, 13, 00), 5.3]),
                ModelInputRow(
                    rowID="rowbar",
                    data=[datetime.datetime(2013, 5, 23, 8, 13, 15), 2.4]),
            ]
            _LOGGER.info("Submitting batch of %d input rows...",
                         len(inputRows))
            swapperAPI.submitRequests(modelID=destModelID, requests=inputRows)

            _LOGGER.info("These models have pending input: %s",
                         swapperAPI.getModelsWithInputPending())

            resultBatches.extend(self._consumeResults(1, timeout=20))
            self.assertEqual(len(resultBatches), 3)

            with MessageBusConnector() as bus:
                # The results message queue should be empty now
                self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName))

            # Delete the model
            _LOGGER.info("Deleting the model")
            swapperAPI.deleteModel(modelID=destModelID,
                                   commandID="deleteModelCmd1")

            _LOGGER.info("Waiting for model deletion result")
            resultBatches.extend(self._consumeResults(1, timeout=20))

            self.assertEqual(len(resultBatches), 4)

            with MessageBusConnector() as bus:
                # The results message queue should be empty now
                self.assertTrue(bus.isEmpty(swapperAPI._resultsQueueName))

                # The model input queue should be deleted now
                self.assertFalse(
                    bus.isMessageQeueuePresent(
                        swapperAPI._getModelInputQName(modelID=destModelID)))

        # Verify results

        # First result batch should be the defineModel result
        batch = resultBatches[0]
        self.assertEqual(batch.modelID, modelID)
        self.assertEqual(len(batch.objects), 1)

        result = batch.objects[0]
        self.assertIsInstance(result, ModelCommandResult)
        self.assertEqual(result.method, "defineModel")
        self.assertEqual(result.status, htmengineerrno.SUCCESS)
        self.assertEqual(result.commandID, "defineModelCmd1")

        # The second result batch should for the cloneModel result
        batch = resultBatches[1]
        self.assertEqual(batch.modelID, modelID)
        self.assertEqual(len(batch.objects), 1)

        result = batch.objects[0]
        self.assertIsInstance(result, ModelCommandResult)
        self.assertEqual(result.method, "cloneModel")
        self.assertEqual(result.status, htmengineerrno.SUCCESS)
        self.assertEqual(result.commandID, "cloneModelCmd1")

        # The third batch should be for the two input rows
        batch = resultBatches[2]
        self.assertEqual(batch.modelID, destModelID)
        self.assertEqual(len(batch.objects), len(inputRows))

        for inputRow, result in zip(inputRows, batch.objects):
            self.assertIsInstance(result, ModelInferenceResult)
            self.assertEqual(result.status, htmengineerrno.SUCCESS)
            self.assertEqual(result.rowID, inputRow.rowID)
            self.assertIsInstance(result.anomalyScore, float)
            self.assertIsInstance(result.multiStepBestPredictions, dict)

        # The fourth batch should be for the "deleteModel"
        batch = resultBatches[3]
        self.assertEqual(batch.modelID, destModelID)
        self.assertEqual(len(batch.objects), 1)

        result = batch.objects[0]
        self.assertIsInstance(result, ModelCommandResult)
        self.assertEqual(result.method, "deleteModel")
        self.assertEqual(result.status, htmengineerrno.SUCCESS)
        self.assertEqual(result.commandID, "deleteModelCmd1")

        # Signal Model Scheduler Service subprocess to shut down and wait for it
        waitResult = dict()

        def runWaiterThread():
            try:
                waitResult["returnCode"] = modelSchedulerSubprocess.wait()
            except:
                _LOGGER.exception(
                    "Waiting for modelSchedulerSubprocess failed")
                waitResult["exceptionInfo"] = traceback.format_exc()
                raise
            return

        modelSchedulerSubprocess.terminate()
        waiterThread = threading.Thread(target=runWaiterThread)
        waiterThread.setDaemon(True)
        waiterThread.start()
        waiterThread.join(timeout=30)
        self.assertFalse(waiterThread.isAlive())

        self.assertEqual(waitResult["returnCode"], 0, msg=repr(waitResult))