def main(): description = 'This script is for calcularing the matrix for converting 3D model to world coordinate and evaluating localization accuracy.' + \ 'Before running this script, please prepare the text file which has image names and 3D coordinate where photos are taken in Ref and Test folder.' parser = argparse.ArgumentParser(description=description) parser.add_argument('project_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG project is located.') parser.add_argument('matches_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG created matches files.') parser.add_argument('sfm_data_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG sfm_data.json is located.') parser.add_argument('--bow', action='store_true', default=False, \ help='Use BOW to accelerate localization if this flag is set (default: False)') parser.add_argument('--beacon', action='store_true', default=False, \ help='Use iBeacon to accelerate localization if this flag is set (default: False)') args = parser.parse_args() project_dir = args.project_dir matches_dir = args.matches_dir sfm_data_dir = args.sfm_data_dir USE_BOW = args.bow USE_BEACON = args.beacon BOW_FILE = os.path.join(matches_dir, "BOWfile.yml") PCA_FILE = os.path.join(matches_dir, "PCAfile.yml") SFM_BEACON_FILE = sfm_data_dir + "/beacon.txt" REF_FOLDER = project_dir + "/Ref" TEST_FOLDER = project_dir + "/Test" if USE_BOW and not os.path.isfile(BOW_FILE): print "Use BOW flag is set, but cannot find BOW model file" sys.exit() if USE_BEACON and not os.path.isfile(SFM_BEACON_FILE): print "Use iBeacon flag is set, but cannot find beacon signal file for SfM data" sys.exit() if not os.path.isfile(os.path.join(REF_FOLDER, "Amat.txt")): # 1. find transformation between reconstructed coordinate and world coordinate # 1.1 localize reference images REF_FOLDER_LOC = os.path.join(REF_FOLDER, "loc") if os.path.isdir(REF_FOLDER_LOC): shutil.rmtree(REF_FOLDER_LOC) os.mkdir(REF_FOLDER_LOC) if USE_BOW and not USE_BEACON: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -k=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) elif not USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(REF_FOLDER,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach)) elif USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(REF_FOLDER,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach) + \ " -kb=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) else: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound)) # extract centers from all json file and write to a file fileLoc = open(os.path.join(REF_FOLDER_LOC, "center.txt"), "w") countLocFrame = 0 for filename in sorted(os.listdir(REF_FOLDER_LOC)): if filename[-4:] != "json": continue countLocFrame = countLocFrame + 1 with open(os.path.join(REF_FOLDER_LOC, filename)) as locJson: #print os.path.join(sfm_locOut,filename) locJsonDict = json.load(locJson) loc = locJsonDict["t"] fileLoc.write( str(loc[0]) + " " + str(loc[1]) + " " + str(loc[2]) + " 255 0 0\n") fileLoc.close() # read reference data mapNameLocRef = FileUtils.loadImageLocationListTxt( os.path.join(REF_FOLDER, "refcoor.txt")) # read localized json file and find its matching world coordinate worldCoor = [] locCoor = [] countLoc = 0 for filename in os.listdir(REF_FOLDER_LOC): if filename[-4:] != "json": continue # read json localization file with open(os.path.join(REF_FOLDER_LOC, filename)) as jsonlocfile: jsonLoc = json.load(jsonlocfile) imgLocName = os.path.basename(jsonLoc["filename"]) # if file exist in map, add to matrix if imgLocName in mapNameLocRef: locCoor.append(jsonLoc["t"]) worldCoor.append(mapNameLocRef[imgLocName]) countLoc = countLoc + 1 print "From " + str(len(mapNameLocRef)) + " reference images, " + str( countLoc) + " images has been localized." if countLoc < 4: print "Cannot fix to world coordinate because of less than 4 reference points" return # find tranformation Amat, inliers = mergeSfM.ransacTransform( np.array(worldCoor).T, np.array(locCoor).T, reconstructParam.ransacThresTransformWorldCoordinateRefImage, ransacRound=1000) if len(inliers) < 4: print "Cannot estimate transformation matrix to world coordinate" print Amat return print "Transformation matrix has " + str(len(inliers)) + "inliers" print Amat with open(os.path.join(REF_FOLDER, "Amat.txt"), "w") as AmatFile: np.savetxt(AmatFile, Amat) FileUtils.convertNumpyMatTxt2OpenCvMatYml( os.path.join(REF_FOLDER, "Amat.txt"), os.path.join(REF_FOLDER, "Amat.yml"), "A") else: with open(os.path.join(REF_FOLDER, "Amat.txt"), "r") as AmatFile: Amat = np.loadtxt(AmatFile) # convert ply file to world coordinate SfmDataUtils.saveGlobalSfM( os.path.join(sfm_data_dir, "sfm_data.json"), os.path.join(REF_FOLDER, "Amat.txt"), os.path.join(sfm_data_dir, "sfm_data_global.json")) os.system("openMVG_main_ComputeSfM_DataColor -i " + os.path.join(sfm_data_dir, "sfm_data_global.json") + " -o " + os.path.join(sfm_data_dir, "colorized_global.ply")) PlyUtis.saveCameraPly( os.path.join(sfm_data_dir, "sfm_data_global.json"), os.path.join(sfm_data_dir, "colorized_global_camera.ply")) PlyUtis.saveStructurePly( os.path.join(sfm_data_dir, "sfm_data_global.json"), os.path.join(sfm_data_dir, "colorized_global_structure.ply")) # start localize test TEST_FOLDER_LOC = os.path.join(TEST_FOLDER, "loc") if not os.path.isfile(os.path.join(TEST_FOLDER_LOC, "center.txt")): # localize test images if os.path.isdir(TEST_FOLDER_LOC): shutil.rmtree(TEST_FOLDER_LOC) os.mkdir(TEST_FOLDER_LOC) if USE_BOW and not USE_BEACON: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -k=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) elif not USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(TEST_FOLDER,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach)) elif USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(TEST_FOLDER,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach) + \ " -kb=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) else: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound)) # extract centers from all json file and write to a file fileLoc = open(os.path.join(TEST_FOLDER_LOC, "center.txt"), "w") countLocFrame = 0 for filename in sorted(os.listdir(TEST_FOLDER_LOC)): if filename[-4:] != "json": continue countLocFrame = countLocFrame + 1 with open(os.path.join(TEST_FOLDER_LOC, filename)) as locJson: #print os.path.join(sfm_locOut,filename) locJsonDict = json.load(locJson) loc = locJsonDict["t"] fileLoc.write( str(loc[0]) + " " + str(loc[1]) + " " + str(loc[2]) + " 255 0 0\n") fileLoc.close() # read test data mapNameLocTest = FileUtils.loadImageLocationListTxt( os.path.join(TEST_FOLDER, "testcoor.txt")) # read localized json file and find its matching world coordinate worldCoorTest = [] locCoorTest = [] countLocTest = 0 for filename in os.listdir(TEST_FOLDER_LOC): if filename[-4:] != "json": continue # read json localization file with open(os.path.join(TEST_FOLDER_LOC, filename)) as jsonlocfile: jsonLoc = json.load(jsonlocfile) imgLocName = os.path.basename(jsonLoc["filename"]) # if file exist in map, add to matrix if imgLocName in mapNameLocTest: locCoorTest.append(jsonLoc["t"]) worldCoorTest.append(mapNameLocTest[imgLocName]) countLocTest = countLocTest + 1 # transform loc coordinate to world coordinate print "From " + str(len(mapNameLocTest)) + " test images, " + str( countLocTest) + " images has been localized." if countLocTest == 0: return locCoorTest1 = np.hstack( (locCoorTest, np.ones((len(locCoorTest), 1), dtype=np.float))) locCoorTestWorld = np.dot(Amat, locCoorTest1.T).T # calculate error normDiff = np.linalg.norm(worldCoorTest - locCoorTestWorld, axis=1) meanErr = np.mean(normDiff) medianErr = np.median(normDiff) print "Mean error = " + str(meanErr) + " meters." print "Median error = " + str(medianErr) + " meters." binEdge = [0.3 * float(x) for x in range(0, 11)] hist = np.histogram(normDiff, bins=binEdge)[0] print "Histogram of error: " + str(hist) print "Cumulative ratio: " + str( np.around(np.cumsum(hist, dtype=float) / countLocTest, 2)) print "Total loc err larger than " + str( np.max(binEdge)) + " meters: " + str(countLocTest - np.sum(hist)) # convert all localization results to world coordinate and merge to one json file locGlobalJsonObj = {} locGlobalJsonObj["locGlobal"] = [] locGlobalPoints = [] for filename in sorted(os.listdir(TEST_FOLDER_LOC)): if filename[-4:] != "json": continue with open(os.path.join(TEST_FOLDER_LOC, filename)) as jsonfile: jsonLoc = json.load(jsonfile) imgLocName = os.path.basename(jsonLoc["filename"]) # if file exist in map if imgLocName in mapNameLocTest: jsonLoc["t_relative"] = jsonLoc["t"] jsonLoc["R_relative"] = jsonLoc["R"] jsonLoc["t"] = np.dot(Amat, np.concatenate([jsonLoc["t"], [1]])).tolist() jsonLoc["R"] = np.dot(jsonLoc["R"], Amat[:, 0:3].T).tolist() jsonLoc["groundtruth"] = mapNameLocTest[imgLocName] locGlobalJsonObj["locGlobal"].append(jsonLoc) locGlobalPoints.append(jsonLoc["t"]) with open(os.path.join(TEST_FOLDER_LOC, "loc_global.json"), "w") as jsonfile: json.dump(locGlobalJsonObj, jsonfile) # save localization results to ply file PlyUtis.addPointToPly( os.path.join(sfm_data_dir, "colorized_global_structure.ply"), locGlobalPoints, os.path.join(TEST_FOLDER_LOC, "colorized_global_localize.ply"))
def main(): description = 'This script is for calcularing the matrix for converting 3D model to world coordinate and evaluating localization accuracy.' + \ 'Before running this script, please prepare the text file which has image names and 3D coordinate where photos are taken in Ref and Test folder.' parser = argparse.ArgumentParser(description=description) parser.add_argument('project_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG project is located.') parser.add_argument('matches_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG created matches files.') parser.add_argument('sfm_data_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG sfm_data.json is located.') parser.add_argument('--bow', action='store_true', default=False, \ help='Use BOW to accelerate localization if this flag is set (default: False)') parser.add_argument('--beacon', action='store_true', default=False, \ help='Use iBeacon to accelerate localization if this flag is set (default: False)') args = parser.parse_args() project_dir = args.project_dir matches_dir = args.matches_dir sfm_data_dir = args.sfm_data_dir USE_BOW = args.bow USE_BEACON = args.beacon BOW_FILE = os.path.join(matches_dir, "BOWfile.yml") PCA_FILE = os.path.join(matches_dir, "PCAfile.yml") SFM_BEACON_FILE = sfm_data_dir + "/beacon.txt" REF_FOLDER = project_dir + "/Ref" TEST_FOLDER = project_dir + "/Test" if USE_BOW and not os.path.isfile(BOW_FILE): print "Use BOW flag is set, but cannot find BOW model file" sys.exit() if USE_BEACON and not os.path.isfile(SFM_BEACON_FILE): print "Use iBeacon flag is set, but cannot find beacon signal file for SfM data" sys.exit() if not os.path.isfile(os.path.join(REF_FOLDER,"Amat.txt")): # 1. find transformation between reconstructed coordinate and world coordinate # 1.1 localize reference images REF_FOLDER_LOC = os.path.join(REF_FOLDER,"loc") if os.path.isdir(REF_FOLDER_LOC): shutil.rmtree(REF_FOLDER_LOC) os.mkdir(REF_FOLDER_LOC) if USE_BOW and not USE_BEACON: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -k=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) elif not USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(REF_FOLDER,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach)) elif USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(REF_FOLDER,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach) + \ " -kb=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) else: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound)) # extract centers from all json file and write to a file fileLoc = open(os.path.join(REF_FOLDER_LOC,"center.txt"),"w") countLocFrame = 0 for filename in sorted(os.listdir(REF_FOLDER_LOC)): if filename[-4:]!="json": continue countLocFrame = countLocFrame + 1 with open(os.path.join(REF_FOLDER_LOC,filename)) as locJson: #print os.path.join(sfm_locOut,filename) locJsonDict = json.load(locJson) loc = locJsonDict["t"] fileLoc.write(str(loc[0]) + " " + str(loc[1]) + " " +str(loc[2]) + " 255 0 0\n" ) fileLoc.close() # read reference data mapNameLocRef = FileUtils.loadImageLocationListTxt(os.path.join(REF_FOLDER,"refcoor.txt")) # read localized json file and find its matching world coordinate worldCoor = [] locCoor = [] countLoc = 0 for filename in os.listdir(REF_FOLDER_LOC): if filename[-4:] != "json": continue # read json localization file with open(os.path.join(REF_FOLDER_LOC,filename)) as jsonlocfile: jsonLoc = json.load(jsonlocfile) imgLocName = os.path.basename(jsonLoc["filename"]) # if file exist in map, add to matrix if imgLocName in mapNameLocRef: locCoor.append(jsonLoc["t"]) worldCoor.append(mapNameLocRef[imgLocName]) countLoc = countLoc + 1 print "From " + str(len(mapNameLocRef)) + " reference images, " + str(countLoc) + " images has been localized." if countLoc < 4: print "Cannot fix to world coordinate because of less than 4 reference points" return # find tranformation Amat, inliers = mergeSfM.ransacTransform(np.array(worldCoor).T, np.array(locCoor).T, reconstructParam.ransacThresTransformWorldCoordinateRefImage, ransacRound=1000) if len(inliers) < 4: print "Cannot estimate transformation matrix to world coordinate" print Amat return print "Transformation matrix has " + str(len(inliers)) + "inliers" print Amat with open(os.path.join(REF_FOLDER,"Amat.txt"),"w") as AmatFile: np.savetxt(AmatFile,Amat) FileUtils.convertNumpyMatTxt2OpenCvMatYml(os.path.join(REF_FOLDER,"Amat.txt"), os.path.join(REF_FOLDER,"Amat.yml"), "A") else: with open(os.path.join(REF_FOLDER,"Amat.txt"),"r") as AmatFile: Amat = np.loadtxt(AmatFile) # convert ply file to world coordinate SfmDataUtils.saveGlobalSfM(os.path.join(sfm_data_dir,"sfm_data.json"), os.path.join(REF_FOLDER,"Amat.txt"), os.path.join(sfm_data_dir,"sfm_data_global.json")) os.system("openMVG_main_ComputeSfM_DataColor -i " + os.path.join(sfm_data_dir,"sfm_data_global.json") + " -o " + os.path.join(sfm_data_dir,"colorized_global.ply")) PlyUtis.saveCameraPly(os.path.join(sfm_data_dir,"sfm_data_global.json"), os.path.join(sfm_data_dir,"colorized_global_camera.ply")) PlyUtis.saveStructurePly(os.path.join(sfm_data_dir,"sfm_data_global.json"), os.path.join(sfm_data_dir,"colorized_global_structure.ply")) # start localize test TEST_FOLDER_LOC = os.path.join(TEST_FOLDER,"loc") if not os.path.isfile(os.path.join(TEST_FOLDER_LOC,"center.txt")): # localize test images if os.path.isdir(TEST_FOLDER_LOC): shutil.rmtree(TEST_FOLDER_LOC) os.mkdir(TEST_FOLDER_LOC) if USE_BOW and not USE_BEACON: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -k=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) elif not USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(TEST_FOLDER,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach)) elif USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(TEST_FOLDER,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach) + \ " -kb=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) else: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound)) # extract centers from all json file and write to a file fileLoc = open(os.path.join(TEST_FOLDER_LOC,"center.txt"),"w") countLocFrame = 0 for filename in sorted(os.listdir(TEST_FOLDER_LOC)): if filename[-4:]!="json": continue countLocFrame = countLocFrame + 1 with open(os.path.join(TEST_FOLDER_LOC,filename)) as locJson: #print os.path.join(sfm_locOut,filename) locJsonDict = json.load(locJson) loc = locJsonDict["t"] fileLoc.write(str(loc[0]) + " " + str(loc[1]) + " " +str(loc[2]) + " 255 0 0\n" ) fileLoc.close() # read test data mapNameLocTest = FileUtils.loadImageLocationListTxt(os.path.join(TEST_FOLDER,"testcoor.txt")) # read localized json file and find its matching world coordinate worldCoorTest = [] locCoorTest = [] countLocTest = 0 for filename in os.listdir(TEST_FOLDER_LOC): if filename[-4:] != "json": continue # read json localization file with open(os.path.join(TEST_FOLDER_LOC,filename)) as jsonlocfile: jsonLoc = json.load(jsonlocfile) imgLocName = os.path.basename(jsonLoc["filename"]) # if file exist in map, add to matrix if imgLocName in mapNameLocTest: locCoorTest.append(jsonLoc["t"]) worldCoorTest.append(mapNameLocTest[imgLocName]) countLocTest = countLocTest + 1 # transform loc coordinate to world coordinate print "From " + str(len(mapNameLocTest)) + " test images, " + str(countLocTest) + " images has been localized." if countLocTest == 0: return locCoorTest1 = np.hstack((locCoorTest,np.ones((len(locCoorTest),1),dtype=np.float))) locCoorTestWorld = np.dot(Amat,locCoorTest1.T).T # calculate error normDiff = np.linalg.norm(worldCoorTest - locCoorTestWorld,axis=1) meanErr = np.mean(normDiff) medianErr = np.median(normDiff) print "Mean error = " + str(meanErr) + " meters." print "Median error = " + str(medianErr) + " meters." binEdge = [0.3*float(x) for x in range(0,11)] hist = np.histogram(normDiff,bins=binEdge)[0] print "Histogram of error: " + str(hist) print "Cumulative ratio: " + str(np.around(np.cumsum(hist,dtype=float)/countLocTest,2)) print "Total loc err larger than " + str(np.max(binEdge)) + " meters: " + str(countLocTest-np.sum(hist)) # convert all localization results to world coordinate and merge to one json file locGlobalJsonObj = {} locGlobalJsonObj["locGlobal"] = [] locGlobalPoints = [] for filename in sorted(os.listdir(TEST_FOLDER_LOC)): if filename[-4:]!="json": continue with open(os.path.join(TEST_FOLDER_LOC,filename)) as jsonfile: jsonLoc = json.load(jsonfile) imgLocName = os.path.basename(jsonLoc["filename"]) # if file exist in map if imgLocName in mapNameLocTest: jsonLoc["t_relative"] = jsonLoc["t"] jsonLoc["R_relative"] = jsonLoc["R"] jsonLoc["t"] = np.dot(Amat,np.concatenate([jsonLoc["t"],[1]])).tolist() jsonLoc["R"] = np.dot(jsonLoc["R"],Amat[:, 0:3].T).tolist() jsonLoc["groundtruth"] = mapNameLocTest[imgLocName] locGlobalJsonObj["locGlobal"].append(jsonLoc) locGlobalPoints.append(jsonLoc["t"]) with open(os.path.join(TEST_FOLDER_LOC,"loc_global.json"),"w") as jsonfile: json.dump(locGlobalJsonObj, jsonfile) # save localization results to ply file PlyUtis.addPointToPly(os.path.join(sfm_data_dir,"colorized_global_structure.ply"), locGlobalPoints, os.path.join(TEST_FOLDER_LOC,"colorized_global_localize.ply"))
def main(): description = 'This script is for calcularing the matrix for converting 3D model to world coordinate and testing localization.' + \ 'Before running this script, please prepare the json file which has 3D coordinate for reference points in Ref folder.' + \ 'You can create reference points json file by sfmCoordinateEditor' parser = argparse.ArgumentParser(description=description) parser.add_argument('project_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG project is located.') parser.add_argument('matches_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG created matches files.') parser.add_argument('sfm_data_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG sfm_data.json is located.') parser.add_argument('-t', '--test-project-dir', action='store', nargs='?', const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where localization test image files are located.') parser.add_argument('-o', '--output-json-filename', action='store', nargs='?', const=None, \ default='loc_global.json', type=str, choices=None, metavar=None, \ help='Output localization result json filename.') parser.add_argument('--bow', action='store_true', default=False, \ help='Use BOW to accelerate localization if this flag is set (default: False)') parser.add_argument('--beacon', action='store_true', default=False, \ help='Use iBeacon to accelerate localization if this flag is set (default: False)') parser.add_argument('--reduce-points', action='store_true', default=False, \ help='Reduce 3D points if points are close after transforming to global coordinate (default: False)') args = parser.parse_args() project_dir = args.project_dir matches_dir = args.matches_dir sfm_data_dir = args.sfm_data_dir test_project_dir = args.test_project_dir output_json_filename = args.output_json_filename USE_BOW = args.bow USE_BEACON = args.beacon USE_REDUCE_POINTS = args.reduce_points BOW_FILE = os.path.join(matches_dir, "BOWfile.yml") PCA_FILE = os.path.join(matches_dir, "PCAfile.yml") SFM_BEACON_FILE = sfm_data_dir + "/beacon.txt" REF_FOLDER = project_dir + "/Ref" if USE_BOW and not os.path.isfile(BOW_FILE): print "Use BOW flag is set, but cannot find BOW model file" sys.exit() if USE_BEACON and not os.path.isfile(SFM_BEACON_FILE): print "Use iBeacon flag is set, but cannot find beacon signal file for SfM data" sys.exit() if not os.path.isfile(os.path.join(REF_FOLDER,"Amat.txt")): # 1. find transformation between reconstructed coordinate and world coordinate refPoints = FileUtils.loadRefPointsJson(os.path.join(REF_FOLDER,"refpoints.json")) # read localized json file and find its matching world coordinate worldCoor = [] locCoor = [] with open(os.path.join(sfm_data_dir, "sfm_data.json")) as fp: sfmData = json.load(fp) for pointId in refPoints: selectedPoint = [point for point in sfmData["structure"] if point["key"]==pointId][0] print "relative coordinate : " + str(selectedPoint["value"]["X"]) print "world coordinate : " + str(refPoints[pointId]) locCoor.append(selectedPoint["value"]["X"]) worldCoor.append(refPoints[pointId]) print "Number of reference points : " + str(len(worldCoor)) if len(worldCoor) < 4: print "Cannot fix to world coordinate because of less than 4 reference points" return # find tranformation Amat, inliers = mergeSfM.ransacTransform(np.array(worldCoor).T, np.array(locCoor).T, reconstructParam.ransacThresTransformWorldCoordinateRefPoint, ransacRound=1000) if len(inliers) < 4: print "Cannot estimate transformation matrix to world coordinate" print Amat return print "Transformation matrix has " + str(len(inliers)) + "inliers" print Amat with open(os.path.join(REF_FOLDER,"Amat.txt"),"w") as AmatFile: np.savetxt(AmatFile,Amat) FileUtils.convertNumpyMatTxt2OpenCvMatYml(os.path.join(REF_FOLDER,"Amat.txt"), os.path.join(REF_FOLDER,"Amat.yml"), "A") else: with open(os.path.join(REF_FOLDER,"Amat.txt"),"r") as AmatFile: Amat = np.loadtxt(AmatFile) if USE_REDUCE_POINTS: print "start reducing 3D points..." with open(os.path.join(sfm_data_dir, "sfm_data.json")) as fp: sfmData = json.load(fp) with open(os.path.join(REF_FOLDER,"Amat.txt"),"r") as AmatFile: Amat = np.loadtxt(AmatFile) print "point size before reducing : " + str(len(sfmData['structure'])) # TODO : revisit the threshold for reducing points #reduceClosePoints(sfmData, Amat, 0.01) reduceClosePointsKDTree(sfmData, Amat, 0.01, 1000) print "point size after reducing : " + str(len(sfmData['structure'])) print "start save reduced sfm data..." os.system("cp " + os.path.join(sfm_data_dir, "sfm_data.json") + " " + os.path.join(sfm_data_dir, "sfm_data_b4rp.json")) with open(os.path.join(sfm_data_dir, "sfm_data.json"), "w") as fp: json.dump(sfmData, fp) print "finish save reduced sfm data..." print "finish reducing 3D points." # convert ply file to world coordinate SfmDataUtils.saveGlobalSfM(os.path.join(sfm_data_dir,"sfm_data.json"), os.path.join(REF_FOLDER,"Amat.txt"), os.path.join(sfm_data_dir,"sfm_data_global.json")) os.system("openMVG_main_ComputeSfM_DataColor -i " + os.path.join(sfm_data_dir,"sfm_data_global.json") + " -o " + os.path.join(sfm_data_dir,"colorized_global.ply")) PlyUtis.saveCameraPly(os.path.join(sfm_data_dir,"sfm_data_global.json"), os.path.join(sfm_data_dir,"colorized_global_camera.ply")) PlyUtis.saveStructurePly(os.path.join(sfm_data_dir,"sfm_data_global.json"), os.path.join(sfm_data_dir,"colorized_global_structure.ply")) # start localize test if test_project_dir: for testFolder in sorted(os.listdir(test_project_dir)): TEST_DIR = os.path.join(test_project_dir,testFolder) if not os.path.exists(os.path.join(TEST_DIR,"inputImg")): continue TEST_FOLDER_LOC = os.path.join(TEST_DIR,"loc") if not os.path.isfile(os.path.join(TEST_FOLDER_LOC,"center.txt")): # localize test images if os.path.isdir(TEST_FOLDER_LOC): shutil.rmtree(TEST_FOLDER_LOC) os.mkdir(TEST_FOLDER_LOC) if USE_BOW and not USE_BEACON: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_DIR,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -k=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) elif not USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_DIR,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(TEST_DIR,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach)) elif USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_DIR,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(TEST_DIR,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach) + \ " -kb=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) else: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_DIR,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound)) # extract centers from all json file and write to a file fileLoc = open(os.path.join(TEST_FOLDER_LOC,"center.txt"),"w") countLocFrame = 0 for filename in sorted(os.listdir(TEST_FOLDER_LOC)): if filename[-4:]!="json": continue countLocFrame = countLocFrame + 1 with open(os.path.join(TEST_FOLDER_LOC,filename)) as locJson: #print os.path.join(sfm_locOut,filename) locJsonDict = json.load(locJson) loc = locJsonDict["t"] fileLoc.write(str(loc[0]) + " " + str(loc[1]) + " " +str(loc[2]) + " 255 0 0\n" ) fileLoc.close() # convert all localization results to world coordinate and merge to one json file locGlobalJsonObj = {} locGlobalJsonObj["locGlobal"] = [] locGlobalPoints = [] for filename in sorted(os.listdir(TEST_FOLDER_LOC)): if filename[-4:]!="json": continue with open(os.path.join(TEST_FOLDER_LOC,filename)) as jsonfile: jsonLoc = json.load(jsonfile) jsonLoc["t_relative"] = jsonLoc["t"] jsonLoc["R_relative"] = jsonLoc["R"] jsonLoc["t"] = np.dot(Amat,np.concatenate([jsonLoc["t"],[1]])).tolist() jsonLoc["R"] = np.dot(jsonLoc["R"],Amat[:, 0:3].T).tolist() locGlobalJsonObj["locGlobal"].append(jsonLoc) locGlobalPoints.append(jsonLoc["t"]) with open(os.path.join(TEST_FOLDER_LOC, output_json_filename),"w") as jsonfile: json.dump(locGlobalJsonObj, jsonfile) # save localization results to ply file PlyUtis.addPointToPly(os.path.join(sfm_data_dir,"colorized_global_structure.ply"), locGlobalPoints, os.path.join(TEST_FOLDER_LOC,"colorized_global_localize.ply"))
def main(): description = 'This script is for calcularing the matrix for converting 3D model to world coordinate and testing localization.' + \ 'Before running this script, please prepare the text file which has image names and 3D coordinate where photos are taken in Ref folder.' parser = argparse.ArgumentParser(description=description) parser.add_argument('project_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG project is located.') parser.add_argument('matches_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG created matches files.') parser.add_argument('sfm_data_dir', action='store', nargs=None, const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where OpenMVG sfm_data.json is located.') parser.add_argument('-t', '--test-project-dir', action='store', nargs='?', const=None, \ default=None, type=str, choices=None, metavar=None, \ help='Directory path where localization test image files are located.') parser.add_argument('-o', '--output-json-filename', action='store', nargs='?', const=None, \ default='loc_global.json', type=str, choices=None, metavar=None, \ help='Output localization result json filename.') parser.add_argument('--bow', action='store_true', default=False, \ help='Use BOW to accelerate localization if this flag is set (default: False)') parser.add_argument('--beacon', action='store_true', default=False, \ help='Use iBeacon to accelerate localization if this flag is set (default: False)') args = parser.parse_args() project_dir = args.project_dir matches_dir = args.matches_dir sfm_data_dir = args.sfm_data_dir test_project_dir = args.test_project_dir output_json_filename = args.output_json_filename USE_BOW = args.bow USE_BEACON = args.beacon BOW_FILE = os.path.join(matches_dir, "BOWfile.yml") PCA_FILE = os.path.join(matches_dir, "PCAfile.yml") SFM_BEACON_FILE = sfm_data_dir + "/beacon.txt" REF_FOLDER = project_dir + "/Ref" if USE_BOW and not os.path.isfile(BOW_FILE): print "Use BOW flag is set, but cannot find BOW model file" sys.exit() if USE_BEACON and not os.path.isfile(SFM_BEACON_FILE): print "Use iBeacon flag is set, but cannot find beacon signal file for SfM data" sys.exit() if not os.path.isfile(os.path.join(REF_FOLDER, "Amat.txt")): # 1. find transformation between reconstructed coordinate and world coordinate # 1.1 localize reference images REF_FOLDER_LOC = os.path.join(REF_FOLDER, "loc") if os.path.isdir(REF_FOLDER_LOC): shutil.rmtree(REF_FOLDER_LOC) os.mkdir(REF_FOLDER_LOC) guideMatchOption = "" if reconstructParam.bGuidedMatchingLocalize: guideMatchOption = " -gm" if USE_BOW and not USE_BEACON: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -k=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE + \ guideMatchOption) elif not USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(REF_FOLDER,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach) + \ guideMatchOption) elif USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(REF_FOLDER,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach) + \ " -kb=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE + \ guideMatchOption) else: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(REF_FOLDER,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + REF_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ guideMatchOption) # extract centers from all json file and write to a file fileLoc = open(os.path.join(REF_FOLDER_LOC, "center.txt"), "w") countLocFrame = 0 for filename in sorted(os.listdir(REF_FOLDER_LOC)): if filename[-4:] != "json": continue countLocFrame = countLocFrame + 1 with open(os.path.join(REF_FOLDER_LOC, filename)) as locJson: locJsonDict = json.load(locJson) if "t" in locJsonDict: loc = locJsonDict["t"] fileLoc.write( str(loc[0]) + " " + str(loc[1]) + " " + str(loc[2]) + " 255 0 0\n") fileLoc.close() # read reference data mapNameLocRef = FileUtils.loadImageLocationListTxt( os.path.join(REF_FOLDER, "refcoor.txt")) # read localized json file and find its matching world coordinate worldCoor = [] locCoor = [] countLoc = 0 for filename in os.listdir(REF_FOLDER_LOC): if filename[-4:] != "json": continue # read json localization file with open(os.path.join(REF_FOLDER_LOC, filename)) as jsonlocfile: jsonLoc = json.load(jsonlocfile) imgLocName = os.path.basename(jsonLoc["filename"]) # if file exist in map, add to matrix if imgLocName in mapNameLocRef: if "t" in jsonLoc: locCoor.append(jsonLoc["t"]) worldCoor.append(mapNameLocRef[imgLocName]) countLoc = countLoc + 1 print "From " + str(len(mapNameLocRef)) + " reference images, " + str( countLoc) + " images has been localized." if countLoc < 4: print "Cannot fix to world coordinate because of less than 4 reference points" return # find tranformation Amat, inliers = mergeSfM.ransacTransform( np.array(worldCoor).T, np.array(locCoor).T, reconstructParam.ransacThresTransformWorldCoordinateRefImage, ransacRound=1000) if len(inliers) < 4: print "Cannot estimate transformation matrix to world coordinate" print Amat return print "Transformation matrix has " + str(len(inliers)) + "inliers" print Amat with open(os.path.join(REF_FOLDER, "Amat.txt"), "w") as AmatFile: np.savetxt(AmatFile, Amat) FileUtils.convertNumpyMatTxt2OpenCvMatYml( os.path.join(REF_FOLDER, "Amat.txt"), os.path.join(REF_FOLDER, "Amat.yml"), "A") else: with open(os.path.join(REF_FOLDER, "Amat.txt"), "r") as AmatFile: Amat = np.loadtxt(AmatFile) # convert ply file to world coordinate SfmDataUtils.saveGlobalSfM( os.path.join(sfm_data_dir, "sfm_data.json"), os.path.join(REF_FOLDER, "Amat.txt"), os.path.join(sfm_data_dir, "sfm_data_global.json")) os.system("openMVG_main_ComputeSfM_DataColor -i " + os.path.join(sfm_data_dir, "sfm_data_global.json") + " -o " + os.path.join(sfm_data_dir, "colorized_global.ply")) PlyUtis.saveCameraPly( os.path.join(sfm_data_dir, "sfm_data_global.json"), os.path.join(sfm_data_dir, "colorized_global_camera.ply")) PlyUtis.saveStructurePly( os.path.join(sfm_data_dir, "sfm_data_global.json"), os.path.join(sfm_data_dir, "colorized_global_structure.ply")) # start localize test if test_project_dir: countFrameTotal = 0 countLocFrameTotal = 0 log_txt_filename = os.path.join(test_project_dir, "log.txt") if os.path.exists(log_txt_filename): os.remove(log_txt_filename) for testFolder in sorted(os.listdir(test_project_dir)): TEST_DIR = os.path.join(test_project_dir, testFolder) if not os.path.exists(os.path.join(TEST_DIR, "inputImg")): continue TEST_FOLDER_LOC = os.path.join(TEST_DIR, "loc") if not os.path.isfile(os.path.join(TEST_FOLDER_LOC, "center.txt")): # localize test images if os.path.isdir(TEST_FOLDER_LOC): shutil.rmtree(TEST_FOLDER_LOC) os.mkdir(TEST_FOLDER_LOC) if USE_BOW and not USE_BEACON: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_DIR,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -k=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) elif not USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_DIR,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(TEST_DIR,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach)) elif USE_BOW and USE_BEACON: os.system(reconstructIBeaconParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_DIR,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound) + \ " -b=" + SFM_BEACON_FILE + \ " -e=" + os.path.join(TEST_DIR,"csv") + \ " -k=" + str(localizeIBeaconParam.locKNNnum) + \ " -c=" + str(localizeIBeaconParam.coocThres) + \ " -v=" + str(localizeIBeaconParam.locSkipSelKNN) + \ " -n=" + str(localizeIBeaconParam.normApproach) + \ " -kb=" + str(localizeBOWParam.locKNNnum) + \ " -a=" + BOW_FILE + \ " -p=" + PCA_FILE) else: os.system(reconstructParam.LOCALIZE_PROJECT_PATH + \ " " + os.path.join(TEST_DIR,"inputImg") + \ " " + sfm_data_dir + \ " " + matches_dir + \ " " + TEST_FOLDER_LOC + \ " -f=" + str(localizeParam.locFeatDistRatio) + \ " -r=" + str(localizeParam.locRansacRound)) # extract centers from all json file and write to a file countLocFrame = 0 fileLoc = open(os.path.join(TEST_FOLDER_LOC, "center.txt"), "w") for filename in sorted(os.listdir(TEST_FOLDER_LOC)): if filename[-4:] != "json": continue countLocFrame = countLocFrame + 1 with open(os.path.join(TEST_FOLDER_LOC, filename)) as locJson: if "t" in locJsonDict: locJsonDict = json.load(locJson) loc = locJsonDict["t"] fileLoc.write( str(loc[0]) + " " + str(loc[1]) + " " + str(loc[2]) + " 255 0 0\n") fileLoc.close() # count input images imageTypes = ("*.jpg", "*.JPG", "*.jpeg", "*.JPEG", "*.png", "*.PNG") imageFiles = [] for imageType in imageTypes: imageFiles.extend( glob.glob(os.path.join(TEST_DIR, "inputImg", imageType))) countFrame = len(imageFiles) # write log file with open(log_txt_filename, "a") as logfile: logfile.write("result for : " + TEST_DIR + "\n") logfile.write("number of localized frame : " + str(countLocFrame) + "/" + str(countFrame) + "\n") logfile.write("ratio of localized frame : " + str(float(countLocFrame) / countFrame) + "\n") countFrameTotal += countFrame countLocFrameTotal += countLocFrame # convert all localization results to world coordinate and merge to one json file locGlobalJsonObj = {} locGlobalJsonObj["locGlobal"] = [] locGlobalPoints = [] for filename in sorted(os.listdir(TEST_FOLDER_LOC)): if filename[-4:] != "json": continue with open(os.path.join(TEST_FOLDER_LOC, filename)) as jsonfile: jsonLoc = json.load(jsonfile) if "t" in jsonLoc: jsonLoc["t_relative"] = jsonLoc["t"] jsonLoc["R_relative"] = jsonLoc["R"] jsonLoc["t"] = np.dot( Amat, np.concatenate([jsonLoc["t"], [1]])).tolist() jsonLoc["R"] = np.dot(jsonLoc["R"], Amat[:, 0:3].T).tolist() locGlobalPoints.append(jsonLoc["t"]) locGlobalJsonObj["locGlobal"].append(jsonLoc) with open(os.path.join(TEST_FOLDER_LOC, output_json_filename), "w") as jsonfile: json.dump(locGlobalJsonObj, jsonfile) # save localization results to ply file PlyUtis.addPointToPly( os.path.join(sfm_data_dir, "colorized_global_structure.ply"), locGlobalPoints, os.path.join(TEST_FOLDER_LOC, "colorized_global_localize.ply")) # write log file with open(log_txt_filename, "a") as logfile: logfile.write("total result" + "\n") logfile.write("number of localized frame : " + str(countLocFrameTotal) + "/" + str(countFrameTotal) + "\n") logfile.write("ratio of localized frame : " + str(float(countLocFrameTotal) / countFrameTotal) + "\n")