コード例 #1
0
def draw_network_interactive(dists_pd, GP, query_result, highlight, q):
    G = nx.Graph()
    for idx in range(len(dists_pd)):
        G.add_edge(dists_pd.iloc[idx,0], dists_pd.iloc[idx,1], weight=dists_pd.iloc[idx,2],
                   quantile=dists_pd.iloc[idx,3])
    
    width=min(900, int(np.sqrt(len(G.nodes)))*150)
    if width < 400:
        width=400
    
    Gi = nx.Graph([(hit,hit) for hit in [highlight] if hit in G.nodes()])
    highlight = hvnx.draw(Gi, GP, node_color="blue", node_size=3000, with_labels=False,
                        width=width, height=width)
    Gi = nx.Graph([(hit,hit) for hit, rep in zip(query_result["Lead gene name"], query_result["Common lists"]) if rep==1 and hit in G.nodes()])
    labels0 = hvnx.draw(Gi, GP, node_color="white", node_size=2500, with_labels=True,
                        width=width, height=width)
    Gi = nx.Graph([(hit,hit) for hit, rep in zip(query_result["Lead gene name"], query_result["Common lists"]) if rep==2 and hit in G.nodes()])
    labels1 = hvnx.draw(Gi, GP, node_color="lightgrey", node_size=2500, with_labels=True,
                        width=width, height=width)
    Gi = nx.Graph([(hit,hit) for hit, rep in zip(query_result["Lead gene name"], query_result["Common lists"]) if rep==3 and hit in G.nodes()])
    labels2 = hvnx.draw(Gi, GP, node_color="orange", node_size=2500, with_labels=True,
                        width=width, height=width)
    if "Query" in query_result.columns:
        Gi = nx.Graph([(hit,hit) for hit in np.unique(query_result["Query"]) if hit in G.nodes()])
        labels3 = hvnx.draw(Gi, GP, node_color="red", node_size=2500, with_labels=True,
                            width=width, height=width)
    else:
        Gi = nx.Graph([(hit,hit) for hit in [query_result["Lead gene name"][0]] if hit in G.nodes()])
        labels3 = hvnx.draw(Gi, GP, node_color="red", node_size=2500, with_labels=True,
                            width=width, height=width)
    # .opts(tools=[HoverTool(tooltips=[('index', '@index_hover')])])

    # edges
    edge_styles = [{"edge_width": 8, "edge_color": "darkred", "style": "solid", "alpha": 1}, # 0.1%
                   {"edge_width": 8, "edge_color": "darkred", "style": "solid", "alpha": 1}, # 0.5%
                   {"edge_width": 8, "edge_color": "darkred", "style": "solid", "alpha": 1}, # 1%
                   {"edge_width": 6, "edge_color": "red", "style": "solid", "alpha": 1}, # 2.5%
                   {"edge_width": 6, "edge_color": "red", "style": "solid", "alpha": 1}, # 5%
                   {"edge_width": 4, "edge_color": "darkorange", "style": "solid", "alpha": 1}, # 10%
                   {"edge_width": 3, "edge_color": "#ababab", "style": "solid", "alpha": 1}, # 25%
                   {"edge_width": 2, "edge_color": "lightgrey", "style": "solid", "alpha": 1}, # 50%
                   {"edge_width": 2, "edge_color": "lightgrey", "style": "dotted", "alpha": 1}] # 100%
    edges = []
    for q_cat, style in zip(q.index[1:], edge_styles):
        edgelist = [(u, v) for (u, v, d) in G.edges(data=True) if d['quantile']==float(q_cat)]
        if len(edgelist) == 0:
            continue
        Gi = nx.Graph(edgelist)
        edge = hvnx.draw(Gi, GP, node_size=2000, with_labels=False,
                         width=width, height=width, **style)
        edges.append(edge)
    
    nw = hv.Overlay(edges[::-1]) * highlight * labels0 * labels1 * labels2 * labels3
    return nw
コード例 #2
0
ファイル: core.py プロジェクト: theodcr/corregraphe
    def draw(self, **kwargs: Dict) -> Overlay:
        """Draws the graph and returns the hvplot object.

        Parameters
        ----------
        **kwargs : Dict[str, Any]
            keyword arguments given to the hvplot.networkx.draw method

        Returns
        -------
        Overlay
            HoloViews Overlay representing the correlation graph
        """
        return hvnx.draw(self.graph,
                         pos=self.pos,
                         edge_width="weight",
                         node_color="cluster_corr",
                         labels="name",
                         colorbar=True,
                         **kwargs)
コード例 #3
0
def draw_graph_hv(G):
    pos = nx.fruchterman_reingold_layout(G)
    edges = G.edges()
    colors = [G[u][v]['color'] for u, v in edges]
    weights = [G[u][v]['weight'] for u, v in edges]
    options = {
        'node_size': 2000,
        'node_color': '#A0CBE2',
        'edge_width': weights,
        'edge_color': colors,
        'width': 1800,
        'height': 900,
        'with_labels': True,
        'alpha': 0.8
    }
    g = hvnx.draw(G, pos, **options)
    renderer = hv.renderer('bokeh')
    renderer.save(g, 'graph.html')
    plot = renderer.get_plot(g).state
    output_file("graph.html")
    save(plot, 'graph.html')
    show(plot)
コード例 #4
0
ファイル: new.py プロジェクト: MarcJavin/WormConnectome
def connections(neuron='BAGL', connstyle=CONN_STYLE):
    '''Prepare graph for plotting'''
    G = nx.DiGraph()

    syn_in = dfs.index[dfs[neuron] > 0].tolist()
    intens_in = dfs.loc[dfs[neuron] > 0, neuron]
    syni = [(pre, neuron, {}) for pre in syn_in]
    G.add_edges_from(syni)

    gaps_ = dfg.index[dfg[neuron] > 0].tolist()
    intens_g = 0.1 * dfg.loc[dfg[neuron] > 0, neuron]
    gaps = [(neuron, k, {}) for k in gaps_] + [(k, neuron, {}) for k in gaps_]
    G.add_edges_from(gaps)

    syn_out = dfs.T.index[dfs.T[neuron] > 0].tolist()
    intens_out = dfs.T.loc[dfs.T[neuron] > 0, neuron]
    syno = [(neuron, post, {}) for post in syn_out]
    G.add_edges_from(syno)

    G.remove_node(neuron)
    pos = nx.layout.circular_layout(G, scale=2)
    G.add_node(neuron)
    pos[neuron] = np.array([0, 0])

    def draw_nodes(shape='o', category=inters, col='k'):
        hvnx.draw_networkx_nodes(
            G,
            pos,
            node_color=col,
            nodelist=[n for n in G.nodes if n in category],
            node_size=NODE_SIZE,
            alpha=0.9)

    draw_nodes(SENSOR_SHAPE, sensors, SENSOR_COLOR)
    draw_nodes(INTER_SHAPE, inters, INTER_COLOR)
    draw_nodes(MOTOR_SHAPE, motors, MOTOR_COLOR)

    nx.draw_networkx_labels(G, pos, font_color='w', font_weight='bold')

    nx.draw_networkx_edges(G,
                           pos,
                           arrowstyle=style,
                           edgelist=syni,
                           edge_color='g',
                           connectionstyle=connstyle,
                           arrowsize=10,
                           alpha=0.7,
                           width=intens_in,
                           node_size=NODE_SIZE)
    nx.draw_networkx_edges(G,
                           pos,
                           arrowstyle=style,
                           edgelist=syno,
                           edge_color='r',
                           connectionstyle=connstyle,
                           arrowsize=10,
                           alpha=0.5,
                           width=intens_out,
                           node_size=NODE_SIZE)
    nx.draw_networkx_edges(G,
                           pos,
                           arrowstyle=styleg,
                           edgelist=gaps,
                           edge_color='Gold',
                           arrowsize=10,
                           alpha=0.8,
                           width=np.hstack((intens_g, intens_g)),
                           node_size=NODE_SIZE)
    #plt.axis('off')
    hvnx.draw(G, pos)
    hvnx.show()
コード例 #5
0
from ndlib.viz.bokeh.DiffusionPrevalence import DiffusionPrevalence
import matplotlib as plot
import selenium
import hvplot.networkx as hvnx
from itertools import compress
import pandas as pd
import random
from ndlib.viz.mpl.TrendComparison import DiffusionTrendComparison

#%% PREPROCESSING: 
# Load graphs and remove isolated nodes to only study the main 
# connected component.

# LOAD GRAPH FOR MAIN NETWORK (SCENARIO 1)
raw_net = nx.read_graphml('budapest_large.graphml')
raw = hvnx.draw(raw_net, node_color = 'lightblue')
print('Properties raw_net: '+ str(len(raw_net.nodes())) 
      + ' and ' + str(len(raw_net.edges())))

# Remove isolated nodes
main_net = raw_net 
main_net.remove_nodes_from(list(nx.isolates(main_net)))
processed = hvnx.draw(main_net, node_color = 'lightblue')
print('Properties main_net: '+ str(len(main_net.nodes())) 
      +' and '+ str(len(main_net.edges())))

# LOAD NETWORK SCENARIO 2
deg_net = nx.read_graphml('budapest_large.graphml')
deg_net.remove_nodes_from(list(nx.isolates(deg_net)))

# LOAD NETWORK SCENARIO 3 
コード例 #6
0
node_size_list = list(node_sizes.values())
number_of_names_to_display = 10
add_labels = sorted(node_sizes, key=node_sizes.get,
                    reverse=True)[:number_of_names_to_display]
label_dict = {name: name if name in add_labels else "" for name in K.nodes}

# In[9]:

hvnx.draw(
    I,
    pos,
    height=800,
    width=800,
    node_size=node_size_list,
    arrowhead_length=0.01,
    with_labels=True,
    labels=label_dict,
    edge_width='weight',
    edge_alpha=0.7,
    edge_color='brown',
    node_color='eigenvector_centrality',
    node_cmap=plt.cm.plasma,
)

# # Cliques
# Cliques are sets of nodes that are all connected to each other. That is, if we have four nodes, A, B, C, and D, all possible connections exist:
# > A --- B</br>
# > A --- C</br>
# > A --- D</br>
# > B --- C</br>
# > B --- D</br>
コード例 #7
0
ファイル: testnetworkx.py プロジェクト: wsheffel/hvplot
 def test_nodes_are_not_sorted(self):
     plot = hvnx.draw(self.g)
     assert all(self.nodes == plot.nodes.dimension_values(2))
コード例 #8
0
for period in enumerate(grphdict.keys()):
    n = period[0]
    pn = period[1]
    periodgraph, pos = period_graph(pn)
    labels = {node: node for node in periodgraph.nodes() if node in commonnames[pn]}
    start = periods[pn]['start']
    end = periods[pn]['end']
    chart.title = f"REMP network {start}-{end}"
    chart = hvnx.draw(G=periodgraph,
                      pos=pos,
                      with_labels=True,
                      labels=labels,
                      node_size=hv.dim('centrality')*200,
                      node_color='entity_type',
                      edge_color='community',
                      cmap='accent',
                      edge_cmap='category20',
                      node_tooltip=['name'],
                      #node_label='name',
                      font_color="black",
                      #font_size='11',
                      width=800,
                      height=600,
                      )

    #chart.configure_view(width=800, height=600,)
    chart.Overlay.opts(title=f"REMP network {start}-{end}")
    if not charts:
        charts = chart
    else:
        charts = charts + chart