def setUp(self): try: import pandas as pd except: raise SkipTest('Pandas not available') patch('pandas') self.df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], columns=['x', 'y'])
def setUp(self): super().setUp() try: import dask.dataframe as dd except: raise SkipTest('Dask not available') patch('dask') self.df = dd.from_pandas(self.df, npartitions=2) self.cat_df = dd.from_pandas(self.cat_df, npartitions=3)
def setUp(self): try: import pandas as pd except: raise SkipTest('Pandas not available') self.backend = 'bokeh' hv.extension(self.backend) Store.current_backend = self.backend self.store_copy = OptionTree(sorted(Store.options().items()), groups=Options._option_groups) patch('pandas') self.df = pd.DataFrame([[1, 2, 'A', 0.1], [3, 4, 'B', 0.2], [5, 6, 'C', 0.3]], columns=['x', 'y', 'category', 'number'])
def setUp(self): try: import pandas as pd except: raise SkipTest('Pandas not available') patch('pandas') self.df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], columns=['x', 'y']) self.cat_df = pd.DataFrame([[1, 2, 'A'], [3, 4, 'B'], [5, 6, 'C']], columns=['x', 'y', 'category']) self.cat_only_df = pd.DataFrame([['A', 'a'], ['B', 'b'], ['C', 'c']], columns=['upper', 'lower']) self.time_df = pd.DataFrame({ 'time': pd.date_range('1/1/2000', periods=10, tz='UTC'), 'A': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'B': 'abcdefghij'})
def setUp(self): try: import numpy as np import pandas as pd except: raise SkipTest('Pandas not available') patch('pandas') self.df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], columns=['x', 'y']) self.cat_df = pd.DataFrame([[1, 2, 'A'], [3, 4, 'B'], [5, 6, 'C']], columns=['x', 'y', 'category']) self.time_df = pd.DataFrame({ 'time': pd.date_range('1/1/2000', periods=5 * 24, freq='1H', tz='UTC'), 'temp': np.sin(np.linspace(0, 5 * 2 * np.pi, 5 * 24)).cumsum() })
def setUp(self): patch('pandas') self.df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], columns=['x', 'y'])