コード例 #1
0
def test_problem_1():
    REF_XTRAIN = "fixtures/X_expected"
    REF_YTRAIN = "fixtures/Y_expected"

    (xtrain, ytrain) = hw1.load_data("data/digitstest.txt")

    ref_xtrain = pickle.load(open(REF_XTRAIN, "rb"), **PICKLE_KWARGS)
    ref_ytrain = pickle.load(open(REF_YTRAIN, "rb"), **PICKLE_KWARGS)

    assert (ref_xtrain.shape == xtrain.shape)
    assert (ref_ytrain.shape == ytrain.shape)
    assert (isAllClose(ref_ytrain, ytrain))
    assert (isAllClose(ref_xtrain, xtrain))
コード例 #2
0
def test_problem_4():
	STARTING_WEIGHTS_PATH = "fixtures/start_weights_problem4"
	ENDING_WEIGHTS_PATH = "fixtures/final_weights_problem4"
	STARTING_BIAS_PATH = "fixtures/start_bias_problem4"
	ENDING_BIAS_PATH = "fixtures/final_bias_problem4"
	PARAMS_PATH = "fixtures/problem4.params.json"

	params = json.loads(open(PARAMS_PATH, "r").read())

	(X, Y)= hw1.load_data("data/digitstrain.txt")
	inputWeights = pickle.load(open(STARTING_WEIGHTS_PATH, "rb"), **PICKLE_KWARGS)
	finalWeights = pickle.load(open(ENDING_WEIGHTS_PATH, "rb"), **PICKLE_KWARGS)

	inputBias = pickle.load(open(STARTING_BIAS_PATH, "rb"), **PICKLE_KWARGS)
	finalBias = pickle.load(open(ENDING_BIAS_PATH, "rb"), **PICKLE_KWARGS)

	weightsToTest, biasToTest = hw1.update_weights_double_layer(X, Y, inputWeights, inputBias, float(params["LEARNING_RATE"]))

	assert(isAllClose(finalWeights, weightsToTest))
	assert(isAllClose(finalBias, biasToTest))
コード例 #3
0
def test_problem_6():
    STARTING_WEIGHTS_PATH = "fixtures/start_weights_problem6"
    ENDING_WEIGHTS_PATH = "fixtures/final_weights_problem6"
    STARTING_BIAS_PATH = "fixtures/start_bias_problem6"
    ENDING_BIAS_PATH = "fixtures/final_bias_problem6"
    PARAMS_PATH = "fixtures/problem6.params.json"

    params = json.loads(open(PARAMS_PATH, "r").read())

    (X, Y) = hw1.load_data("data/digitstrain.txt")
    inputWeights = pickle.load(open(STARTING_WEIGHTS_PATH, "rb"),
                               **PICKLE_KWARGS)
    finalWeights = pickle.load(open(ENDING_WEIGHTS_PATH, "rb"),
                               **PICKLE_KWARGS)

    inputBias = pickle.load(open(STARTING_BIAS_PATH, "rb"), **PICKLE_KWARGS)
    finalBias = pickle.load(open(ENDING_BIAS_PATH, "rb"), **PICKLE_KWARGS)

    inputLoss, inputAccuracy = forward_and_compute_loss(
        X, Y, inputWeights, inputBias, float(params["LEARNING_RATE"]),
        params["ACTIVATION"])

    weightsToTest, biasToTest = hw1.update_weights_double_layer_act_mom(
        X, Y, inputWeights, inputBias, float(params["LEARNING_RATE"]),
        params["ACTIVATION"], float(params["MOMENTUM"]),
        int(params["EPOCH_COUNT"]))

    correctLoss, correctAccuracy = forward_and_compute_loss(
        X, Y, finalWeights, finalBias, float(params["LEARNING_RATE"]),
        params["ACTIVATION"])

    myLoss, myAccuracy = forward_and_compute_loss(
        X, Y, weightsToTest, biasToTest, float(params["LEARNING_RATE"]),
        params["ACTIVATION"])

    print("inputLoss:   ", inputLoss, " inputAccuracy:   ", inputAccuracy)
    print("correctLoss: ", correctLoss, " correctAccuracy: ", correctAccuracy)
    print("myLoss:      ", myLoss, " myAccuracy:      ", myAccuracy)

    assert (isAllClose(finalWeights, weightsToTest))
    assert (isAllClose(finalBias, biasToTest))