コード例 #1
0
def test_chull():
    'tests aggregation of a cirle of sets using convex hull'

    mode = HybridAutomaton().new_mode('mode_name')

    r = 1.0
    eps = 0.05
    num_sets = 16
    lpi_list = []

    for theta in np.linspace(0, 2*math.pi, num_sets, endpoint=False):
        y = r * math.sin(theta)
        x = r * math.cos(theta)
        
        mat = [[1, 0], [-1, 0], [0, 1], [0, -1]]
        rhs = [x + eps, -(x - eps), y + eps, -(y - eps)]
        lpi = lputil.from_constraints(mat, rhs, mode)
    
        lpi_list.append(lpi)
        
    #verts = []

    #for lpi in lpi_list:
    #    verts += lpplot.get_verts(lpi)

    #    xs, ys = zip(*lpplot.get_verts(lpi))
    #    plt.plot(xs, ys, 'k-')

    lpi = lputil.aggregate_chull(lpi_list, mode)

    #xs, ys = zip(*lpplot.get_verts(lpi))
    #plt.plot(xs, ys, 'r--')

    #for vert in verts:
    #    assert lputil.is_point_in_lpi(vert, lpi)

    #plt.show()

    # test if it's really convex hull
    for theta in np.linspace(0, 2*math.pi, num_sets):
        y = (r + 2*eps) * math.sin(theta)
        x = (r + 2*eps) * math.cos(theta)
        
        assert not lputil.is_point_in_lpi([x, y], lpi)

        y = (r - 2*eps) * math.sin(theta)
        x = (r - 2*eps) * math.cos(theta)

        assert lputil.is_point_in_lpi([x, y], lpi)
コード例 #2
0
def test_chull_ha5():
    'test convex hull aggregation of harmonic oscillator with 5 sets'

    mode = HybridAutomaton().new_mode('mode_name')

    steps = 5
    step_size = math.pi/4

    lpi_list = []

    a_mat = np.array([[0, 1], [-1, 0]], dtype=float)

    for step_num in range(steps):
        box = [[-5, -4], [-0.5, 0.5]]
        
        lpi = lputil.from_box(box, mode)

        t = step_num * step_size
        basis_mat = expm(a_mat * t)
        lputil.set_basis_matrix(lpi, basis_mat)

        lpi_list.append(lpi)
        
    verts = []

    for lpi in lpi_list:
        verts += lpplot.get_verts(lpi)

        xs, ys = zip(*lpplot.get_verts(lpi))
        #plt.plot(xs, ys, 'k-')

    lpi = lputil.aggregate_chull(lpi_list, mode)
    #xs, ys = zip(*lpplot.get_verts(lpi))
    #plt.plot(xs, ys, 'r--')

    #plt.show()

    # test if it's really convex hull
    assert lputil.is_point_in_lpi([0, 4.5], lpi)

    for vert in verts:
        assert lputil.is_point_in_lpi(vert, lpi)
コード例 #3
0
def test_rotated_aggregate():
    'tests rotated aggregation'

    mode = HybridAutomaton().new_mode('mode_name')
    lpi1 = lputil.from_box([[0, 1], [0, 1]], mode)
    lpi2 = lputil.from_box([[1, 2], [1, 2]], mode)

    sq2 = math.sqrt(2) / 2.0

    agg_dirs = np.array([[sq2, sq2], [sq2, -sq2]], dtype=float)

    lpi = lputil.aggregate([lpi1, lpi2], agg_dirs, mode)

    assert lputil.is_point_in_lpi([0, 0], lpi)
    assert lputil.is_point_in_lpi([2, 2], lpi)
    assert lputil.is_point_in_lpi([1, 2], lpi)
    assert lputil.is_point_in_lpi([2, 1], lpi)
    assert lputil.is_point_in_lpi([0, 1], lpi)
    assert lputil.is_point_in_lpi([1, 0], lpi)

    verts = lpplot.get_verts(lpi)

    assert len(verts) == 5

    for p in [(0.5, -0.5), (-0.5, 0.5), (2.5, 1.5), (1.5, 2.5)]:
        assert pair_almost_in(p, verts)

    assert verts[0] == verts[-1]
コード例 #4
0
def test_aggregate_on_subspace():
    '''
    test aggregation when the dynamics and sets are only on a subspace. 
    '''

    # dynamics are x' == 1, y' == 0, a' == 0
    # lpi1 is [0, 1] x [0, 1] x [1, 1]
    # lpi2 is [3, 4] x [0, 1] x [1, 1]

    # aggregation shouldn't need to introduce a variable along the y direction

    mode = HybridAutomaton().new_mode('mode_name')
    lpi1 = lputil.from_box([[0, 1], [0, 1], [1, 1]], mode)
    lpi2 = lputil.from_box([[4, 5], [0, 1], [1, 1]], mode)

    #a_csr = csr_matrix(np.array([[0, 0, 1], [0, 0, 0], [0, 0, 0]], dtype=float))
    sqr = math.sqrt(2) / 2
    agg_dirs = np.array([[1, 0, 0], [0, sqr, sqr], [0, sqr, -sqr]], dtype=float)

    # box aggregation
    lpi = lputil.aggregate([lpi1, lpi2], agg_dirs, mode)

    # lpi1 corners
    for pt in [(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)]:
        assert lputil.is_point_in_lpi(pt, lpi)

    # lpi2 corners
    for pt in [(4, 0, 1), (4, 1, 1), (5, 0, 1), (5, 1, 1)]:
        assert lputil.is_point_in_lpi(pt, lpi)

    # make sure we have new variable names
    names = lpi.get_names()

    expected_names = ["m0_i0", "m0_i1", "m0_i2", "m0_c0", "m0_c1", "m0_c2"]

    assert names == expected_names
コード例 #5
0
def test_chull_lines():
    'tests aggregation of two lines in 2d using convex hull'

    mode = HybridAutomaton().new_mode('mode_name')

    center = [-5, -1, 7]
    generator = [0.5, 0.1, 1.0]
    lpi = lputil.from_zonotope(center, [generator], mode)

    t1 = math.pi / 3
    a_mat = np.array([[-0.3, 1, 0], [-1, -0.3, 0], [0, 0.1, 1.1]], dtype=float)
    bm = expm(a_mat * t1)
    lputil.set_basis_matrix(lpi, bm)

    lpi_list = [lpi.clone()]

    all_verts = []
    verts = lpplot.get_verts(lpi)
    all_verts += verts
    #xs, ys = zip(*verts)
    #plt.plot(xs, ys, 'k-')

    t2 = t1 + 0.1
    bm = expm(a_mat * t2)
    lputil.set_basis_matrix(lpi, bm)

    lpi_list.append(lpi.clone())

    verts = lpplot.get_verts(lpi)
    all_verts += verts
    #xs, ys = zip(*verts)
    #plt.plot(xs, ys, 'k-')

    chull_lpi = lputil.aggregate_chull(lpi_list, mode)

    #xs, ys = zip(*lpplot.get_verts(chull_lpi))
    #plt.plot(xs, ys, 'r--')

    #plt.show()

    for vert in all_verts:
        assert lputil.is_point_in_lpi(vert, chull_lpi)
コード例 #6
0
def test_aggregate3():
    'tests aggregation of 3 sets, inspired by the harmonic oscillator system'

    mode = HybridAutomaton().new_mode('mode_name')
    lpi1 = lputil.from_box([[0, 1], [0, 1]], mode)

    # middle set is a diamond
    mat = [[1, 1], [-1, -1], [1, -1], [-1, 1]]
    s = 3.5
    rhs = [6+s, -(6-s), s, s]
    lpi2 = lputil.from_constraints(mat, rhs, mode)
    
    lpi3 = lputil.from_box([[5, 6], [5, 6]], mode)

    lpi_list = [lpi1, lpi2, lpi3]
    verts = []

    for lpi in lpi_list:
        verts += lpplot.get_verts(lpi)

        #xs, ys = zip(*lpplot.get_verts(lpi))
        #plt.plot(xs, ys, 'k-')

    random.seed(0)

    for _ in range(10):
        random_mat = np.random.rand(2, 2)
        agg_dirs = lputil.reorthogonalize_matrix(random_mat, 2)

        lpi = lputil.aggregate(lpi_list, agg_dirs, mode)

        #xs, ys = zip(*lpplot.get_verts(lpi))
        #plt.plot(xs, ys, 'r--')

        for vert in verts:
            assert lputil.is_point_in_lpi(vert, lpi)
コード例 #7
0
def test_chull_drivetrain():
    'convex hull aggregation debugging from drivetrain system'

    mode = HybridAutomaton().new_mode('mode_name')

    center = [-0.0432, -11, 0, 30, 0, 30, 360, -0.0013, 30, -0.0013, 30, 0, 1]
    generator = [0.0056, 4.67, 0, 10, 0, 10, 120, 0.0006, 10, 0.0006, 10, 0, 0]

    lpi = lputil.from_zonotope(center, [generator], mode)

    # neg_angle init dynamics
    a_mat = np.array([ \
        [0, 0, 0, 0, 0, 0, 0.0833333333333333, 0, -1, 0, 0, 0, 0], \
        [13828.8888888889, -26.6666666666667, 60, 60, 0, 0, -5, -60, 0, 0, 0, 0, 116.666666666667], \
        [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], \
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -5], \
        [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], \
        [0, 0, 0, 0, -714.285714285714, -0.04, 0, 0, 0, 714.285714285714, 0, 0, 0], \
        [-2777.77777777778, 3.33333333333333, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -83.3333333333333], \
        [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], \
        [100, 0, 0, 0, 0, 0, 0, -1000, -0.01, 1000, 0, 0, 3], \
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], \
        [0, 0, 0, 0, 1000, 0, 0, 1000, 0, -2000, -0.01, 0, 0], \
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], \
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], \
        ], dtype=float)

    # plot dimensions
    xdim = 0
    ydim = 1

    step = 5.0E-2
    t1 = 0
    bm = expm(a_mat * t1)
    lputil.set_basis_matrix(lpi, bm)

    lpi_list = [lpi.clone()]

    all_verts = []
    verts = lpplot.get_verts(lpi, xdim=xdim, ydim=ydim)
    all_verts += verts
    #xs, ys = zip(*verts)
    #plt.plot(xs, ys, 'k-')

    t2 = t1 + step
    bm = expm(a_mat * t2)
    lputil.set_basis_matrix(lpi, bm)

    lpi_list.append(lpi.clone())

    verts = lpplot.get_verts(lpi, xdim=xdim, ydim=ydim)
    all_verts += verts
    #xs, ys = zip(*verts)
    #plt.plot(xs, ys, 'k-')

    chull_lpi = lputil.aggregate_chull(lpi_list, mode)

    plot_vecs = lpplot.make_plot_vecs(num_angles=256, offset=0.01)
    verts = lpplot.get_verts(chull_lpi, xdim=xdim, ydim=ydim, plot_vecs=plot_vecs)
    #xs, ys = zip(*verts)
    #plt.plot(xs, ys, 'r--')

    #plt.show()

    for vert in all_verts:
        assert lputil.is_point_in_lpi(vert, chull_lpi)
コード例 #8
0
def test_agg_ha():
    'test aggregation with the harmonic oscillator dynamics'

    ha = HybridAutomaton('Deaggregation Example')

    m1 = ha.new_mode('green')
    m1.set_dynamics([[0, 1], [-1, 0]])

    m2 = ha.new_mode('cyan')
    m2.set_dynamics([[0, 0, 0], [0, 0, -2], [0, 0, 0]])

    t1 = ha.new_transition(m1, m2)
    t1.set_guard_true()
    reset_mat = [[1, 0], [0, 1], [0, 0]]
    t1.set_reset(reset_mat, [[0], [0], [1]], [[1], [-1]], [1, -1]) # create 3rd variable with a0 = 1

    mode = ha.modes['green']
    init_lpi = lputil.from_box([(-5, -4), (-0.5, 0.5)], mode)
    
    init_list = [StateSet(init_lpi, mode)]

    step = math.pi/4
    settings = HylaaSettings(step, 2*step)
    settings.process_urgent_guards = True
    settings.plot.plot_mode = PlotSettings.PLOT_NONE
    settings.stdout = HylaaSettings.STDOUT_DEBUG

    core = Core(ha, settings)
    core.setup(init_list)

    core.do_step() # pop
    #xs, ys = zip(*core.cur_state.verts(core.plotman))
    #plt.plot(xs, ys, 'k-')
    
    core.do_step() # 0
    #xs, ys = zip(*core.cur_state.verts(core.plotman))
    #plt.plot(xs, ys, 'k-')

    core.do_step() # 1
    #xs, ys = zip(*core.cur_state.verts(core.plotman))
    #plt.plot(xs, ys, 'k-')
    
    core.do_step() # 2
    assert len(core.aggdag.waiting_list) > 1

    #for state in core.waiting_list:
    #    xs, ys = zip(*state.verts(core.plotman))
    #    plt.plot(xs, ys, 'k-')
    
    core.do_step() # pop
    assert not core.aggdag.waiting_list

    lpi = core.aggdag.get_cur_state().lpi

    # 3 constraints from basis matrix
    # 2 aggregation directions from premode arnoldi, +1 from null space
    # + 2 more aggregation directions from box (3rd is omited since it's exactly the same as null space direction)

    #print(lpi)
    #xs, ys = zip(*core.cur_state.verts(core.plotman))
    #plt.plot(xs, ys, 'r--')
    #plt.show()

    assert lpi.get_num_rows() == 3 + 2 * (5)
    assert lputil.is_point_in_lpi((-5, 2, 1), lpi)