ssp.proc.speed = vs ssp.proc.temp = t ssp.proc.sal = s ssp.proc.flag[40:50] = Dicts.flags['user'] ssp.proc.flag[50:70] = Dicts.flags['filtered'] ssp.meta.latitude = 43.13555 ssp.meta.longitude = -70.9395 ssp.meta.utc_time = datetime.utcnow() return ssp tss_depth = 5.0 tss_value = 1500.0 avg_depth = 1000.0 half_swath_angle = 70.0 ssp = make_fake_ssp(bias=0.0) ssp_list = ProfileList() ssp_list.append_profile(ssp) start_time = datetime.now() profile = TracedProfile(tss_depth=tss_depth, tss_value=tss_value, avg_depth=avg_depth, half_swath=half_swath_angle, ssp=ssp_list.cur) end_time = datetime.now() logger.debug("timing: %s" % (end_time - start_time)) logger.debug("traced profile:\n%s" % profile) # logger.debug("api:\n%s" % dir(profile))
ssp.proc.depth = d ssp.proc.speed = vs ssp.proc.temp = t ssp.proc.sal = s ssp.meta.latitude = 43.13555 ssp.meta.longitude = -70.9395 ssp.meta.utc_time = datetime.utcnow() return ssp avg_depth = 10000.0 # just a very deep value half_swath_angle = 70.0 # a safely large angle ssp1 = make_fake_ssp(ss_bias=0.0, fixed=False) ssp1_list = ProfileList() ssp1_list.append_profile(ssp1) tp1 = TracedProfile(ssp=ssp1_list.cur, avg_depth=avg_depth, half_swath=half_swath_angle) # with open("tp1.txt", "w") as fod: # fod.write(tp1.str_rays()) ssp2 = make_fake_ssp(ss_bias=50.0, d_bias=5, fixed=False) ssp2_list = ProfileList() ssp2_list.append_profile(ssp2) tp2 = TracedProfile(ssp=ssp2_list.cur, avg_depth=avg_depth, half_swath=half_swath_angle) # with open("tp2.txt", "w") as fod: # fod.write(tp2.str_rays())
def query(self, lat: float, lon: float, datestamp: Union[date, dt, None] = None, server_mode: bool = False): """Query WOA13 for passed location and timestamp""" if datestamp is None: datestamp = dt.utcnow() if isinstance(datestamp, dt): datestamp = datestamp.date() if not isinstance(datestamp, date): raise RuntimeError("invalid date passed: %s" % type(datestamp)) logger.debug("query: %s @ (%.6f, %.6f)" % (datestamp, lon, lat)) # check the inputs if (lat is None) or (lon is None) or (datestamp is None): logger.error("invalid query: %s @ (%s, %s)" % (datestamp.strftime("%Y%m%d"), lon, lat)) return None if not self.has_data_loaded: if not self.load_grids(): logger.error("No data") return None self.calc_indices(month=datestamp.month) # Find the nearest grid node lat_base_idx, lon_base_idx = self.grid_coords(lat=lat, lon=lon) lat_offsets = range(lat_base_idx - self.search_radius, lat_base_idx + self.search_radius + 1) lon_offsets = range(lon_base_idx - self.search_radius, lon_base_idx + self.search_radius + 1) # Search nodes surrounding the requested position to find the closest non-land t = np.zeros(self.num_levels) s = np.zeros(self.num_levels) t_min = np.zeros(self.num_levels) s_min = np.zeros(self.num_levels) t_max = np.zeros(self.num_levels) s_max = np.zeros(self.num_levels) dist_arr = np.zeros(self.num_levels) dist_t_sd = np.zeros(self.num_levels) dist_s_sd = np.zeros(self.num_levels) dist_arr[:] = 99999999 dist_t_sd[:] = 99999999 dist_s_sd[:] = 99999999 min_dist = 999999999 num_visited = 0 # These keep track of the closest node found, this will also # be used to populate lat/lon of the cast to be delivered lat_idx = -1 lon_idx = -1 for this_lat_index in lat_offsets: for this_lon_index in lon_offsets: if this_lon_index >= self.lon.size: # logger.debug("[%s] >= [%s]" % (this_lon_index, self.t[self.month_idx].variables['lon'].size)) this_lon_index -= self.lat.size # Check to see if we're at sea or on land if self.landsea[this_lat_index][this_lon_index] == 1: # logger.debug("at land: %s, %s" % (this_lat_index, this_lon_index)) # from matplotlib import pyplot # pyplot.imshow(self.landsea, origin='lower') # pyplot.scatter([this_lon_index], [this_lat_index], c='r', s=40) # pyplot.show() continue # calculate the distance to the grid node dist = self.g.distance(lon, lat, self.lon[this_lon_index], self.lat[this_lat_index]) # logger.debug("[%s %s] [%s %s]" % (self.lon.shape, self.lat.shape, this_lon_index, this_lat_index)) # logger.debug("dist: %s" % dist) # Keep track of the closest valid grid node to report the pseudo-cast position if dist < min_dist: min_dist = dist lat_idx = this_lat_index lon_idx = this_lon_index # Extract monthly temperature and salinity profile for this location t_profile = self.t[self.month_idx].variables['t_an'][0, :, this_lat_index, this_lon_index] s_profile = self.s[self.month_idx].variables['s_an'][0, :, this_lat_index, this_lon_index] # Extract seasonal temperature and salinity profile for this location t_profile2 = self.t[self.season_idx].variables['t_an'][0, :, this_lat_index, this_lon_index] s_profile2 = self.s[self.season_idx].variables['s_an'][0, :, this_lat_index, this_lon_index] # Now do the same for the standard deviation profiles t_sd_profile = self.t[self.month_idx].variables['t_sd'][0, :, this_lat_index, this_lon_index] s_sd_profile = self.s[self.month_idx].variables['s_sd'][0, :, this_lat_index, this_lon_index] t_sd_profile2 = self.t[self.season_idx].variables['t_sd'][0, :, this_lat_index, this_lon_index] s_sd_profile2 = self.s[self.season_idx].variables['s_sd'][0, :, this_lat_index, this_lon_index] # Overwrite the top of the seasonal profiles with the monthly profiles t_profile2[0:t_profile.size] = t_profile s_profile2[0:s_profile.size] = s_profile t_sd_profile2[0:t_sd_profile.size] = t_sd_profile s_sd_profile2[0:s_sd_profile.size] = s_sd_profile # For each element in the profile, only keep those whose distance is closer than values # found from previous iterations (maintain the closest value at each depth level) # logger.debug("profile sz: %d\n%s" % (t_profile2.size, t_profile2)) for i in range(t_profile2.size): if dist >= dist_arr[i]: continue if (t_profile2[i] < 50.0) and (s_profile2[i] < 500.0) and (s_profile2[i] >= 0): t[i] = t_profile2[i] s[i] = s_profile2[i] dist_arr[i] = dist # Now do the same thing for the temperature standard deviations for i in range(t_sd_profile2.size): if dist >= dist_t_sd[i]: continue if (t_sd_profile2[i] < 50.0) and (t_sd_profile2[i] > -2): t_min[i] = t_profile2[i] - t_sd_profile2[i] if t_min[i] < -2.0: # can't have overly cold water t_min[i] = -2.0 t_max[i] = t_profile2[i] + t_sd_profile2[i] dist_t_sd[i] = dist # Now do the same thing for the salinity standard deviations for i in range(s_sd_profile2.size): if dist >= dist_s_sd[i]: continue if (s_sd_profile2[i] < 500.0) and (s_sd_profile2[i] >= 0): s_min[i] = s_profile2[i] - s_sd_profile2[i] if s_min[i] < 0: # Can't have a negative salinity s_min[i] = 0 s_max[i] = s_profile2[i] + s_sd_profile2[i] dist_s_sd[i] = dist num_visited += 1 if (lat_idx == -1) and (lon_idx == -1): logger.info("possible request on land") return None valid = dist_arr != 99999999 num_values = t[valid].size logger.debug("valid: %s" % num_values) if lon > 180.0: # Go back to negative longitude lon -= 360.0 # populate output profiles ssp = Profile() ssp.meta.sensor_type = Dicts.sensor_types['Synthetic'] ssp.meta.probe_type = Dicts.probe_types['WOA13'] ssp.meta.latitude = lat ssp.meta.longitude = lon ssp.meta.utc_time = dt(year=datestamp.year, month=datestamp.month, day=datestamp.day) ssp.init_data(num_values) ssp.data.depth = self.t[self.season_idx].variables['depth'][0:num_values] ssp.data.temp = t[valid] ssp.data.sal = s[valid] ssp.calc_data_speed() ssp.clone_data_to_proc() ssp.init_sis() # - min/max # Isolate realistic values for i in range(t_min.size): if dist_t_sd[i] == 99999999 or dist_s_sd[i] == 99999999: num_values = i break # -- min ssp_min = Profile() ssp_min.meta.sensor_type = Dicts.sensor_types['Synthetic'] ssp_min.meta.probe_type = Dicts.probe_types['WOA13'] ssp_min.meta.latitude = lat ssp_min.meta.longitude = lon ssp_min.meta.utc_time = dt(year=datestamp.year, month=datestamp.month, day=datestamp.day) if num_values > 0: ssp_min.init_data(num_values) ssp_min.data.depth = self.t[self.season_idx].variables['depth'][0:num_values] ssp_min.data.temp = t_min[valid][0:num_values] ssp_min.data.sal = s_min[valid][0:num_values] ssp_min.calc_data_speed() ssp_min.clone_data_to_proc() ssp_min.init_sis() else: ssp_min = None # -- max ssp_max = Profile() ssp_max.meta.sensor_type = Dicts.sensor_types['Synthetic'] ssp_max.meta.probe_type = Dicts.probe_types['WOA13'] ssp_max.meta.latitude = lat ssp_max.meta.longitude = lon ssp_max.meta.utc_time = dt(year=datestamp.year, month=datestamp.month, day=datestamp.day) ssp.meta.original_path = "WOA13_%s" % datestamp.strftime("%Y%m%d") if num_values > 0: ssp_max.init_data(num_values) ssp_max.data.depth = self.t[self.season_idx].variables['depth'][0:num_values].astype(np.float64) ssp_max.data.temp = t_max[valid][0:num_values] ssp_max.data.sal = s_max[valid][0:num_values] ssp_max.calc_data_speed() ssp_max.clone_data_to_proc() ssp_max.init_sis() else: ssp_max = None profiles = ProfileList() profiles.append_profile(ssp) if ssp_min: profiles.append_profile(ssp_min) if ssp_max: profiles.append_profile(ssp_max) profiles.current_index = 0 # logger.debug("retrieved: %s" % profiles) return profiles
def query(self, lat: Optional[float], lon: Optional[float], datestamp: Union[date, dt, None] = None, server_mode: bool = False): """Query RTOFS for passed location and timestamp""" if datestamp is None: datestamp = dt.utcnow() if isinstance(datestamp, dt): datestamp = datestamp.date() if not isinstance(datestamp, date): raise RuntimeError("invalid date passed: %s" % type(datestamp)) logger.debug("query: %s @ (%.6f, %.6f)" % (datestamp, lon, lat)) # check the inputs if (lat is None) or (lon is None) or (datestamp is None): logger.error("invalid query: %s @ (%s, %s)" % (datestamp.strftime("%Y%m%d"), lon, lat)) return None try: lat_idx, lon_idx = self.grid_coords(lat, lon, datestamp=datestamp, server_mode=server_mode) if lat_idx is None: logger.info("location outside of GoMOFS coverage") return None except TypeError as e: logger.critical("while converting location to grid coords, %s" % e) return None logger.debug("idx > lat: %s, lon: %s" % (lat_idx, lon_idx)) lat_s_idx = lat_idx - self._search_half_window if lat_s_idx < 0: lat_s_idx = 0 lat_n_idx = lat_idx + self._search_half_window if lat_n_idx >= self._lat.shape[0]: lat_n_idx = self._lat.shape[0] - 1 lon_w_idx = lon_idx - self._search_half_window if lon_w_idx < 0: lon_w_idx = 0 lon_e_idx = lon_idx + self._search_half_window if lon_e_idx >= self._lon.shape[1]: lon_e_idx = self._lon.shape[1] - 1 # logger.info("indices -> %s %s %s %s" % (lat_s_idx, lat_n_idx, lon_w_idx, lon_e_idx)) lat_search_window = lat_n_idx - lat_s_idx + 1 lon_search_window = lon_e_idx - lon_w_idx + 1 logger.info("updated search window: (%s, %s)" % (lat_search_window, lon_search_window)) # Need +1 on the north and east indices since it is the "stop" value in these slices t = self._file.variables['temp'][self._day_idx, :, lat_s_idx:lat_n_idx + 1, lon_w_idx:lon_e_idx + 1] s = self._file.variables['salt'][self._day_idx, :, lat_s_idx:lat_n_idx + 1, lon_w_idx:lon_e_idx + 1] # Set 'unfilled' elements to NANs (BUT when the entire array has valid data, it returns numpy.ndarray) if isinstance(t, np.ma.core.MaskedArray): t_mask = t.mask t._sharedmask = False t[t_mask] = np.nan if isinstance(s, np.ma.core.MaskedArray): s_mask = s.mask s._sharedmask = False s[s_mask] = np.nan # Calculate distances from requested position to each of the grid node locations distances = np.zeros( (self._d.size, lon_search_window, lat_search_window)) longitudes = self._lon[lat_s_idx:lat_n_idx + 1, lon_w_idx:lon_e_idx + 1] latitudes = self._lat[lat_s_idx:lat_n_idx + 1, lon_w_idx:lon_e_idx + 1] for i in range(lat_search_window): for j in range(lon_search_window): dist = self.g.distance(longitudes[i, j], latitudes[i, j], lon, lat) distances[:, i, j] = dist # logger.info("node (%s %s), pos: %3.2f, %3.2f, dist: %3.1f" # % (i, j, latitudes[i, j], longitudes[i, j], distances[0, i, j])) # Get mask of "no data" elements and replace these with NaNs in distance array t_mask = np.isnan(t) distances[t_mask] = np.nan s_mask = np.isnan(s) distances[s_mask] = np.nan # logger.info("distance array:\n%s" % distances[0]) # Spin through all the depth levels temp_pot = np.zeros(self._d.size) temp_in_situ = np.zeros(self._d.size) d = np.zeros(self._d.size) sal = np.zeros(self._d.size) num_values = 0 for i in range(self._d.size): t_level = t[i] s_level = s[i] d_level = distances[i] try: ind = np.nanargmin(d_level) except ValueError: # logger.info("%s: all-NaN slices" % i) continue if np.isnan(ind): logger.info("%s: bottom of valid data" % i) break ind2 = np.unravel_index(ind, t_level.shape) t_closest = t_level[ind2] s_closest = s_level[ind2] # d_closest = d_level[ind2] temp_pot[i] = t_closest sal[i] = s_closest d[i] = self._d[i] # Calculate in-situ temperature p = Oc.d2p(d[i], lat) temp_in_situ[i] = Oc.in_situ_temp(s=sal[i], t=t_closest, p=p, pr=self._ref_p) # logger.info("%02d: %6.1f %6.1f > T/S/Dist: %3.1f %3.1f %3.1f [pot.temp. %3.1f]" # % (i, d[i], p, temp_in_situ[i], s_closest, d_closest, t_closest)) num_values += 1 if num_values == 0: logger.info("no data from lookup!") return None # ind = np.nanargmin(distances[0]) # ind2 = np.unravel_index(ind, distances[0].shape) # switching to the query location # lat_out = latitudes[ind2] # lon_out = longitudes[ind2] # while lon_out > 180.0: # lon_out -= 360.0 # Make a new SV object to return our query in ssp = Profile() ssp.meta.sensor_type = Dicts.sensor_types['Synthetic'] ssp.meta.probe_type = Dicts.probe_types['GoMOFS'] ssp.meta.latitude = lat if lon > 180.0: # Go back to negative longitude lon -= 360.0 ssp.meta.longitude = lon ssp.meta.utc_time = dt(year=datestamp.year, month=datestamp.month, day=datestamp.day) ssp.meta.original_path = "GoMOFS_%s" % datestamp.strftime("%Y%m%d") ssp.init_data(num_values) ssp.data.depth = d[0:num_values] ssp.data.temp = temp_in_situ[0:num_values] ssp.data.sal = sal[0:num_values] ssp.calc_data_speed() ssp.clone_data_to_proc() ssp.init_sis() profiles = ProfileList() profiles.append_profile(ssp) return profiles
def query(self, nc_path: str, lat: float, lon: float) -> Optional[ProfileList]: if not os.path.exists(nc_path): raise RuntimeError('Unable to locate %s' % nc_path) logger.debug('nc path: %s' % nc_path) if (lat is None) or (lon is None): logger.error("invalid location query: (%s, %s)" % (lon, lat)) return None logger.debug('query location: %s, %s' % (lat, lon)) progress = CliProgress() try: self._file = Dataset(nc_path) progress.update(20) except (RuntimeError, IOError) as e: logger.warning("unable to access data: %s" % e) self.clear_data() progress.end() return None try: self.name = self._file.title time = self._file.variables['time'] self._timestamp = num2date(time[0], units=time.units) logger.debug("Retrieved time: %s" % self._timestamp.isoformat()) # Now get latitudes, longitudes and depths for x,y,z referencing self._lats = self._file.variables['lat'][:] self._lons = self._file.variables['lon'][:] # logger.debug('lat:(%s)\n%s' % (self._lats.shape, self._lats)) # logger.debug('lon:(%s)\n%s' % (self._lons.shape, self._lons)) self._zeta = self._file.variables['zeta'][0, :] self._siglay = self._file.variables['siglay'][:] self._h = self._file.variables['h'][:] # logger.debug('zeta:(%s)\n%s' % (self._zeta.shape, self._zeta)) # logger.debug('siglay:(%s)\n%s' % (self._siglay.shape, self._siglay[:, 0])) # logger.debug('h:(%s)\n%s' % (self._h.shape, self._h)) self._temp = self._file.variables['temp'][:] self._sal = self._file.variables['salinity'][:] # logger.debug('temp:(%s)\n%s' % (self._temp.shape, self._temp[:, 0])) # logger.debug('sal:(%s)\n%s' % (self._sal.shape, self._sal[:, 0])) except Exception as e: logger.error( "troubles in variable lookup for lat/long grid and/or depth: %s" % e) self.clear_data() progress.end() return None min_dist = 100000.0 min_idx = None for idx, _ in enumerate(self._lats): nc_lat = self._lats[idx] nc_lon = self._lons[idx] if nc_lon > 180.0: nc_lon = nc_lon - 360.0 nc_dist = self.g.distance(nc_lon, nc_lat, lon, lat) # logger.debug('loc: %.6f, %.6f -> %.6f' % (nc_lat, nc_lon, nc_dist)) if nc_dist < min_dist: min_dist = nc_dist min_idx = idx if min_dist >= 10000.0: logger.error("location too far from model nodes: %.f" % min_dist) self.clear_data() progress.end() return None self._loc_idx = min_idx self._lon = self._lons[self._loc_idx] if self._lon > 180.0: self._lon = self._lon - 360.0 self._lat = self._lats[self._loc_idx] logger.debug('closest node: %d [%s, %s] -> %s' % (self._loc_idx, self._lat, self._lon, min_dist)) zeta = self._zeta[self._loc_idx] h = self._h[self._loc_idx] siglay = -self._siglay[:, self._loc_idx] # logger.debug('zeta: %s, h: %s, siglay: %s' % (zeta, h, siglay)) self._d = siglay * (h + zeta) # logger.debug('d:(%s)\n%s' % (self._h.shape, self._d)) # Make a new SV object to return our query in ssp = Profile() ssp.meta.sensor_type = Dicts.sensor_types['Synthetic'] ssp.meta.probe_type = Dicts.probe_types[self.name] ssp.meta.latitude = self._lat ssp.meta.longitude = self._lon ssp.meta.utc_time = dt(year=self._timestamp.year, month=self._timestamp.month, day=self._timestamp.day, hour=self._timestamp.hour, minute=self._timestamp.minute, second=self._timestamp.second) ssp.meta.original_path = "%s_%s" % ( self.name, self._timestamp.strftime("%Y%m%d_%H%M%S")) ssp.init_data(self._d.shape[0]) ssp.data.depth = self._d[:] ssp.data.temp = self._temp[0, :, self._loc_idx] ssp.data.sal = self._sal[0, :, self._loc_idx] ssp.calc_data_speed() ssp.clone_data_to_proc() ssp.init_sis() profiles = ProfileList() profiles.append_profile(ssp) progress.end() return profiles
def query(self, lat: Optional[float], lon: Optional[float], dtstamp: Optional[dt] = None, server_mode: bool = False): """Query RTOFS for passed location and timestamp""" if dtstamp is None: dtstamp = dt.utcnow() if not isinstance(dtstamp, dt): raise RuntimeError("invalid datetime passed: %s" % type(dtstamp)) logger.debug("query: %s @ (%.6f, %.6f)" % (dtstamp, lon, lat)) # check the inputs if (lat is None) or (lon is None): logger.error("invalid query: %s @ (%s, %s)" % (dtstamp.strftime("%Y/%m/%d %H:%M:%S"), lon, lat)) return None try: lat_idx, lon_idx = self.grid_coords(lat, lon, dtstamp=dtstamp, server_mode=server_mode) except TypeError as e: logger.critical("while converting location to grid coords, %s" % e) return None # logger.debug("idx > lat: %s, lon: %s" % (lat_idx, lon_idx)) lat_s_idx = lat_idx - self._search_half_window lat_n_idx = lat_idx + self._search_half_window lon_w_idx = lon_idx - self._search_half_window lon_e_idx = lon_idx + self._search_half_window # logger.info("indices -> %s %s %s %s" % (lat_s_idx, lat_n_idx, lon_w_idx, lon_e_idx)) if lon < self._lon_0: # Make all longitudes safe lon += 360.0 longitudes = np.zeros((self._search_window, self._search_window)) if (lon_e_idx < self._lon.size) and (lon_w_idx >= 0): # logger.info("safe case") # Need +1 on the north and east indices since it is the "stop" value in these slices t = self._file_temp.variables['temperature'][self._day_idx, :, lat_s_idx:lat_n_idx + 1, lon_w_idx:lon_e_idx + 1] s = self._file_sal.variables['salinity'][self._day_idx, :, lat_s_idx:lat_n_idx + 1, lon_w_idx:lon_e_idx + 1] # Set 'unfilled' elements to NANs (BUT when the entire array has valid data, it returns numpy.ndarray) if isinstance(t, np.ma.core.MaskedArray): t_mask = t.mask t._sharedmask = False t[t_mask] = np.nan if isinstance(s, np.ma.core.MaskedArray): s_mask = s.mask s._sharedmask = False s[s_mask] = np.nan lons = self._lon[lon_w_idx:lon_e_idx + 1] for i in range(self._search_window): longitudes[i, :] = lons else: logger.info("split case") # --- Do the left portion of the array first, this will run into the wrap longitude lon_e_idx = self._lon.size - 1 # lon_west_index can be negative if lon_index is on the westernmost end of the array if lon_w_idx < 0: lon_w_idx = lon_w_idx + self._lon.size # logger.info("using lon west/east indices -> %s %s" % (lon_w_idx, lon_e_idx)) # Need +1 on the north and east indices since it is the "stop" value in these slices t_left = self._file_temp.variables['temperature'][self._day_idx, :, lat_s_idx:lat_n_idx + 1, lon_w_idx:lon_e_idx + 1] s_left = self._file_sal.variables['salinity'][self._day_idx, :, lat_s_idx:lat_n_idx + 1, lon_w_idx:lon_e_idx + 1] # Set 'unfilled' elements to NANs (BUT when the entire array has valid data, it returns numpy.ndarray) if isinstance(t_left, np.ma.core.MaskedArray): t_mask = t_left.mask t_left[t_mask] = np.nan if isinstance(s_left, np.ma.core.MaskedArray): s_mask = s_left.mask s_left[s_mask] = np.nan lons_left = self._lon[lon_w_idx:lon_e_idx + 1] for i in range(self._search_window): longitudes[i, 0:lons_left.size] = lons_left # logger.info("longitudes are now: %s" % longitudes) # --- Do the right portion of the array first, this will run into the wrap # longitude so limit it accordingly lon_w_idx = 0 lon_e_idx = self._search_window - lons_left.size - 1 # Need +1 on the north and east indices since it is the "stop" value in these slices t_right = self._file_temp.variables['temperature'][self._day_idx, :, lat_s_idx:lat_n_idx + 1, lon_w_idx:lon_e_idx + 1] s_right = self._file_sal.variables['salinity'][self._day_idx, :, lat_s_idx:lat_n_idx + 1, lon_w_idx:lon_e_idx + 1] # Set 'unfilled' elements to NANs (BUT when the entire array has valid data, it returns numpy.ndarray) if isinstance(t_right, np.ma.core.MaskedArray): t_mask = t_right.mask t_right[t_mask] = np.nan if isinstance(s_right, np.ma.core.MaskedArray): s_mask = s_right.mask s_right[s_mask] = np.nan lons_right = self._lon[lon_w_idx:lon_e_idx + 1] for i in range(self._search_window): longitudes[i, lons_left.size:self._search_window] = lons_right # merge data t = np.zeros((self._file_temp.variables['lev'].size, self._search_window, self._search_window)) t[:, :, 0:lons_left.size] = t_left t[:, :, lons_left.size:self._search_window] = t_right s = np.zeros((self._file_temp.variables['lev'].size, self._search_window, self._search_window)) s[:, :, 0:lons_left.size] = s_left s[:, :, lons_left.size:self._search_window] = s_right # Calculate distances from requested position to each of the grid node locations distances = np.zeros((self._d.size, self._search_window, self._search_window)) latitudes = np.zeros((self._search_window, self._search_window)) lats = self._lat[lat_s_idx:lat_n_idx + 1] for i in range(self._search_window): latitudes[:, i] = lats for i in range(self._search_window): for j in range(self._search_window): dist = self.g.distance(longitudes[i, j], latitudes[i, j], lon, lat) distances[:, i, j] = dist # logger.info("node %s, pos: %3.1f, %3.1f, dist: %3.1f" # % (i, latitudes[i, j], longitudes[i, j], distances[0, i, j])) # logger.info("distance array:\n%s" % distances[0]) # Get mask of "no data" elements and replace these with NaNs in distance array t_mask = np.isnan(t) distances[t_mask] = np.nan s_mask = np.isnan(s) distances[s_mask] = np.nan # Spin through all the depth levels temp_pot = np.zeros(self._d.size) temp_in_situ = np.zeros(self._d.size) d = np.zeros(self._d.size) sal = np.zeros(self._d.size) num_values = 0 for i in range(self._d.size): t_level = t[i] s_level = s[i] d_level = distances[i] try: ind = np.nanargmin(d_level) except ValueError: # logger.info("%s: all-NaN slices" % i) continue if np.isnan(ind): logger.info("%s: bottom of valid data" % i) break ind2 = np.unravel_index(ind, t_level.shape) t_closest = t_level[ind2] s_closest = s_level[ind2] # d_closest = d_level[ind2] temp_pot[i] = t_closest sal[i] = s_closest d[i] = self._d[i] # Calculate in-situ temperature p = Oc.d2p(d[i], lat) temp_in_situ[i] = Oc.in_situ_temp(s=sal[i], t=t_closest, p=p, pr=self._ref_p) # logger.info("%02d: %6.1f %6.1f > T/S/Dist: %3.1f %3.1f %3.1f [pot.temp. %3.1f]" # % (i, d[i], p, temp_in_situ[i], s_closest, d_closest, t_closest)) num_values += 1 if num_values == 0: logger.info("no data from lookup!") return None # ind = np.nanargmin(distances[0]) # ind2 = np.unravel_index(ind, distances[0].shape) # switching to the query location # lat_out = latitudes[ind2] # lon_out = longitudes[ind2] # while lon_out > 180.0: # lon_out -= 360.0 # Make a new SV object to return our query in ssp = Profile() ssp.meta.sensor_type = Dicts.sensor_types['Synthetic'] ssp.meta.probe_type = Dicts.probe_types['RTOFS'] ssp.meta.latitude = lat if lon > 180.0: # Go back to negative longitude lon -= 360.0 ssp.meta.longitude = lon ssp.meta.utc_time = dt(year=dtstamp.year, month=dtstamp.month, day=dtstamp.day, hour=dtstamp.hour, minute=dtstamp.minute, second=dtstamp.second) ssp.meta.original_path = "RTOFS_%s" % dtstamp.strftime("%Y%m%d_%H%M%S") ssp.init_data(num_values) ssp.data.depth = d[0:num_values] ssp.data.temp = temp_in_situ[0:num_values] ssp.data.sal = sal[0:num_values] ssp.calc_data_speed() ssp.clone_data_to_proc() ssp.init_sis() profiles = ProfileList() profiles.append_profile(ssp) return profiles