コード例 #1
0
def eval_svm(iv_file, class2int_file, test_file,
            preproc_file,
            model_file, score_file, vector_score_file,
            eval_type, **kwargs):
    
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    tdr_args = TDR.filter_args(**kwargs)
    tdr = TDR(iv_file, class2int_file, test_file, preproc, **tdr_args)
    x, ndx = tdr.read()

    model = SVM.load(model_file)
    
    t1 = time.time()
    scores = model.predict(x, eval_type)
    
    dt = time.time() - t1
    num_trials = scores.shape[0]*scores.shape[1]
    logging.info('Elapsed time: %.2f s. Elapsed time per trial: %.2f ms.'
                 % (dt, dt/num_trials*1000))

    s = TrialScores(ndx.model_set, ndx.seg_set, scores.T)
    s.save(score_file)

    if vector_score_file is not None:
        h5 = HDW(vector_score_file)
        h5.write(ndx.seg_set, '', scores)
コード例 #2
0
def eval_plda(iv_file, ndx_file, enroll_file, test_file,
              preproc_file,
              model_file, score_file, plda_type, **kwargs):
    
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    tdr_args = TDR.filter_args(**kwargs)
    tdr = TDR(iv_file, ndx_file, enroll_file, test_file, preproc, **tdr_args)
    x_e, x_t, enroll, ndx = tdr.read()

    model = F.load_plda(plda_type, model_file)
    
    t1 = time.time()
    scores = model.llr_1vs1(x_e, x_t)
    
    dt = time.time() - t1
    num_trials = x_e.shape[0] * x_t.shape[0]
    logging.info('Elapsed time: %.2f s. Elapsed time per trial: %.2f ms.'
          % (dt, dt/num_trials*1000))

    s = TrialScores(enroll, ndx.seg_set, scores)
    s.save(score_file)
コード例 #3
0
ファイル: eval-cos-1vs1.py プロジェクト: whkanggg/hyperion
def eval_cos(iv_file, ndx_file, enroll_file, test_file,
             preproc_file, score_file, **kwargs):
    
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    tdr_args = TDR.filter_args(**kwargs)
    tdr = TDR(iv_file, ndx_file, enroll_file, test_file, preproc, **tdr_args)
    x_e, x_t, enroll, ndx = tdr.read()

    lnorm = LNorm()
    x_e = lnorm.predict(x_e)
    x_t = lnorm.predict(x_t)
    
    t1 = time.time()
    scores = np.dot(x_e, x_t.T)
    
    dt = time.time() - t1
    num_trials = x_e.shape[0] * x_t.shape[0]
    logging.info('Elapsed time: %.2f s. Elapsed time per trial: %.2f ms.'
                 % (dt, dt/num_trials*1000))

    s = TrialScores(enroll, ndx.seg_set, scores)
    s.save(score_file)
コード例 #4
0
def eval_plda(iv_file, ndx_file, enroll_file, test_file, preproc_file,
              model_file, score_file, pool_method, **kwargs):

    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    tdr_args = TDR.filter_args(**kwargs)
    tdr = TDR(iv_file, ndx_file, enroll_file, test_file, preproc, **tdr_args)
    x_e, x_t, enroll, ndx = tdr.read()
    enroll, ids_e = np.unique(enroll, return_inverse=True)

    model = F.load_plda(plda_type, model_file)

    t1 = time.time()

    scores = model.llr_Nvs1(x_e, x_t, method=pool_method, ids1=ids_e)

    dt = time.time() - t1
    num_trials = len(enroll) * x_t.shape[0]
    logging.info('Elapsed time: %.2f s. Elapsed time per trial: %.2f ms.' %
                 (dt, dt / num_trials * 1000))

    s = TrialScores(enroll, ndx.seg_set, scores)
    s.save(score_file)
コード例 #5
0
def convert(input_file, output_file, class_file):

    r = DRF.create(input_file)
    seg_set, score_mat = r.read(0, squeeze=True)

    with open(class_file, 'r') as f:
        model_set = [line.rstrip().split()[0] for line in f]

    scores = TrialScores(model_set, seg_set, score_mat.T)
    scores.save(output_file)
コード例 #6
0
def eval_pdda(iv_file, ndx_file, enroll_file, test_file,
              preproc_file,
              model_file, score_file,
              pool_method, eval_method,
              num_samples_y, num_samples_z, num_samples_elbo, qy_only,
              **kwargs):

    set_float_cpu('float32')
    
    if preproc_file is not None:
        preproc = TransformList.load(preproc_file)
    else:
        preproc = None

    tdr_args = TDR.filter_args(**kwargs)
    tdr = TDR(iv_file, ndx_file, enroll_file, test_file, preproc, **tdt_args)
    x_e, x_t, enroll, ndx = tdr.read()
    enroll, ids_e = np.unique(enroll, return_inverse=True)

    if qy_only:
        model = TVAEY.load(model_file)
        model.build(max_seq_length=2, num_samples=num_samples_y)
    else:
        model = TVAEYZ.load(model_file)
        model.build(max_seq_length=2,
                    num_samples_y=num_samples_y, num_samples_z=num_samples_z)

    t1 = time.time()
    scores = model.eval_llr_Nvs1(x_e, ids_e, x_t,
                                 pool_method=pool_method,
                                 eval_method=eval_method,
                                 num_samples=num_samples_elbo)
    dt = time.time() - t1
    num_trials = len(enroll) * x_t.shape[0]
    logging.info('Elapsed time: %.2f s. Elapsed time per trial: %.2f ms.' %
                 (dt, dt/num_trials*1000))

    s = TrialScores(enroll, ndx.seg_set, scores)
    s.save(score_file)