コード例 #1
0
    def test_create_ds_template_context_no_db(self, mock_pnu,
                                              mock_create_template_dataset):

        context = setup_test_context()

        dim_sizes_dict = {"n_w": 271, "n_s": 10}

        variables_dict_defs = {"def1": "vars1", "def2": "vars2"}
        metadata_defs = {"def1": {}, "def2": {}}

        hdsb = HypernetsDSBuilder(context=context,
                                  variables_dict_defs=variables_dict_defs,
                                  metadata_defs=metadata_defs)
        ds = hdsb.create_ds_template(dim_sizes_dict,
                                     ds_format="def1",
                                     propagate_ds="propagate_ds")

        # test calls to create_template_dataset
        mock_pnu.return_value.create_product_name.assert_called_once_with(
            "def1")
        mock_create_template_dataset.assert_called_once_with(
            "vars1",
            dim_sizes_dict,
            metadata={
                "product_name":
                mock_pnu.return_value.create_product_name.return_value
            },
            propagate_ds="propagate_ds",
            metadata_db=context.metadata_db,
            metadata_db_query=None)
コード例 #2
0
    def test_get_target_sequences_1sequence(self):
        tmpdir = "tmp_" + "".join(random.choices(string.ascii_lowercase, k=6))
        context = setup_test_context(
            raw_data_directory=os.path.join(tmpdir, "data"),
            archive_directory=os.path.join(tmpdir, "out"),
            metadata_db_url="sqlite:///" + tmpdir + "/metadata.db",
            anomaly_db_url="sqlite:///" + tmpdir + "/anomaly.db",
            archive_db_url="sqlite:///" + tmpdir + "/archive.db",
            create_directories=True,
            create_dbs=True)

        context.set_config_value(
            "raw_data_directory",
            os.path.join(context.get_config_value("raw_data_directory"),
                         "SEQ20200311T112230"),
        )

        expected_sequences = [
            os.path.join(tmpdir, "data", "SEQ20200311T112230")
        ]
        sequences = get_target_sequences(context, False)

        self.assertCountEqual(expected_sequences, sequences)

        shutil.rmtree(tmpdir)
コード例 #3
0
    def test_create_ds_template_context(self, mock_pnu,
                                        mock_create_template_dataset):
        temp_name = ''.join(random.choices(string.ascii_lowercase, k=6))

        context = setup_test_context(
            anomaly_db_url="sqlite:///anomaly_" + temp_name + ".db",
            metadata_db_url="sqlite:///metadata_" + temp_name + ".db",
            create_dbs=True)
        dim_sizes_dict = {"n_w": 271, "n_s": 10}

        variables_dict_defs = {"def1": "vars1", "def2": "vars2"}
        metadata_defs = {"def1": {}, "def2": {}}

        hdsb = HypernetsDSBuilder(context=context,
                                  variables_dict_defs=variables_dict_defs,
                                  metadata_defs=metadata_defs)
        ds = hdsb.create_ds_template(dim_sizes_dict,
                                     ds_format="def1",
                                     propagate_ds="propagate_ds")

        # test calls to create_template_dataset
        mock_pnu.return_value.create_product_name.assert_called_once_with(
            "def1")
        mock_create_template_dataset.assert_called_once_with(
            "vars1",
            dim_sizes_dict,
            metadata={
                "product_name":
                mock_pnu.return_value.create_product_name.return_value
            },
            propagate_ds="propagate_ds",
            metadata_db=context.metadata_db,
            metadata_db_query={})

        teardown_test_context(context, remove_dbs=True)
コード例 #4
0
    def test_run_mock(self, mock_RhymerHypstar):
        context = setup_test_context()

        hp = HypernetsProcessor()
        hp.context = context

        hp.run()

        # Here you can check what RhymerHypstar was called with to see that that works correctly
        mock_RhymerHypstar.assert_called_once_with()
コード例 #5
0
    def test_run(self):

        context = setup_test_context()

        hp = HypernetsProcessor()
        hp.context = context

        hp.run()

        self.assertTrue(True)
コード例 #6
0
    def test_create_product_name_context(self):
        with freeze_time("2020/1/8 9:45:30"):

            context = setup_test_context()
            context.set_config_value("time", datetime(2018, 4, 3, 11, 0, 0))
            pnu = ProductNameUtil(context=context)
            pname = pnu.create_product_name("L_L1A_RAD")
            self.assertEqual(
                "HYPERNETS_L_TEST_L1A_RAD_201804031100_202001080945_v0.0",
                pname)
コード例 #7
0
                cov_filament = punpy.convert_corr_to_cov(
                    np.ones((len(gains[:, 2]), len(gains[:, 2]))),
                    gains[:, 2] * (gains[:, 6]**2)**0.5 / 100)

                calibration_data["corr_systematic_indep_gains"].values[i_cal] = \
                    punpy.correlation_from_covariance(cov_diag+cov_other+cov_full+cov_filament)

                calibration_data["u_systematic_corr_rad_irr_gains"].values[
                    i_cal] = gains[:, 2] * (gains[:, 4]**2 + gains[:, 5]**2 +
                                            gains[:, 18]**2)**0.5 / 100

                cov_other = punpy.convert_corr_to_cov(
                    np.eye(len(gains[:, 2])), gains[:, 2] *
                    (gains[:, 4]**2 + gains[:, 18]**2)**0.5 / 100)

                cov_filament = punpy.convert_corr_to_cov(
                    np.ones((len(gains[:, 2]), len(gains[:, 2]))),
                    gains[:, 2] * (gains[:, 5]**2)**0.5 / 100)

                calibration_data["corr_systematic_corr_rad_irr_gains"].values[i_cal] = \
                    punpy.correlation_from_covariance(cov_other+cov_filament)
                i_cal += 1

        return calibration_data


if __name__ == '__main__':
    context = setup_test_context()
    calcov = CalibrationConverter(context)
    calcov.convert_all_calibration_data()
    teardown_test_context(context)
コード例 #8
0
    def test_end_to_end(self):
        this_directory_path = os.path.abspath(os.path.dirname(__file__))
        this_directory_path = os.path.join(this_directory_path,"..\\")

        tmpdir = "tmp_"+"".join(random.choices(string.ascii_lowercase,k=6))
        #context = setup_test_context()

        context = setup_test_context(
        raw_data_directory = os.path.join(tmpdir,"data"),
        archive_directory = os.path.join(tmpdir,"out"),
        metadata_db_url = "sqlite:///"+tmpdir+"/metadata.db",
        anomaly_db_url = "sqlite:///"+tmpdir+"/anomoly.db",
        archive_db_url = "sqlite:///"+tmpdir+"/archive.db",
        create_directories = True,
        create_dbs = False )

        context.set_config_value('network', 'l')
        context.set_config_value('measurement_function_calibrate', 'StandardMeasurementFunction')
        context.set_config_value('measurement_function_interpolate', 'LandNetworkInterpolationIrradianceLinear')
        context.set_config_value('measurement_function_surface_reflectance', 'LandNetworkProtocol')
        context.set_config_value("processor_directory",this_directory_path)
        context.set_config_value("calibration_directory",os.path.join(this_directory_path,"..\\calibration_files\\HYPSTAR_cal\\"))
        context.set_config_value("archive_directory", os.path.join(tmpdir,"out"))

        context.set_config_value('version','0.1')
        context.set_config_value('site_abbr','test')
        context.set_config_value('product_format','netcdf4')
        context.set_config_value('hypstar_cal_number','220241')
        context.set_config_value('cal_date','200728')
        context.set_config_value('outliers',7)

        context.set_config_value('write_l2a',True)
        context.set_config_value('write_l1a',True)
        context.set_config_value('write_l1b',True)
        context.set_config_value('plot_l2a',True)
        context.set_config_value('plot_l1a',True)
        context.set_config_value('plot_l1b',True)
        context.set_config_value('plot_diff',True)
        context.set_config_value('plotting_directory',os.path.join(tmpdir,"out/plots/"))
        context.set_config_value('plotting_format',"png")

        cal = Calibrate(context,MCsteps=100)
        avg = Average(context)
        intp = Interpolate(context,MCsteps=1000)
        surf = SurfaceReflectance(context,MCsteps=1000)

        test_l0_rad,test_l0_irr,test_l0_bla,test_l1a_rad,test_l1a_irr,test_l1b_rad,test_l1b_irr,test_l2a,test_l2a_avg=setup_test_files(context)

        L1a_rad = cal.calibrate_l1a("radiance",test_l0_rad,test_l0_bla)
        L1a_irr = cal.calibrate_l1a("irradiance",test_l0_irr,test_l0_bla)
        L1b_rad = avg.average_l1b("radiance",L1a_rad)
        L1b_irr = avg.average_l1b("irradiance",L1a_irr)
        L1c = intp.interpolate_l1c(L1b_rad,L1b_irr)
        L2a = surf.process_l2(L1c)
        # np.testing.assert_allclose(test_l1a_rad["radiance"].values[:,0],L1a_rad["radiance"].values[:,0],rtol=0.12,equal_nan=True)
        # np.testing.assert_allclose(test_l1b_rad["radiance"].values,L1b_rad["radiance"].values,rtol=0.12,equal_nan=True)
        #np.testing.assert_allclose(np.nansum(test_l1b_rad["radiance"].values),np.nansum(L1b_rad["radiance"].values),rtol=0.05,equal_nan=True)

        #np.testing.assert_allclose(test_l1b_rad["radiance"].values,L1b_rad["radiance"].values,rtol=0.03,equal_nan=True)
        #np.testing.assert_allclose(L1b_irr["irradiance"].values,test_l1b_irr["irradiance"].values,rtol=0.04,equal_nan=True)
        np.testing.assert_allclose(test_l2a["reflectance"].values,L2a["reflectance"].values,rtol=0.19,equal_nan=True)
        np.testing.assert_allclose(np.nansum(test_l2a["reflectance"].values),np.nansum(L2a["reflectance"].values),rtol=0.05,equal_nan=True)
        np.testing.assert_allclose(np.nansum(test_l2a_avg["reflectance"].values),np.nansum(L2a["reflectance"].values),rtol=0.001,equal_nan=True)
        shutil.rmtree(tmpdir)