コード例 #1
0
 def test_circle_spec(self):
     s = self.s_s
     s.data = np.ones_like(s.data)
     r = CircleROI(20, 25, 20)
     r_ann = CircleROI(20, 25, 20, 15)
     sr = r(s)
     sr_ann = r_ann(s)
     scale = s.axes_manager[0].scale
     n = int(round(40 / scale))
     assert sr.axes_manager.navigation_shape == (n, n)
     assert sr_ann.axes_manager.navigation_shape == (n, n)
     # Check that mask is same for all images:
     for i in range(n):
         for j in range(n):
             assert (np.all(sr.data.mask[j, i, :] == True) or
                     np.all(sr.data.mask[j, i, :] == False))
             assert (np.all(sr_ann.data.mask[j, i, :] == True) or
                     np.all(sr_ann.data.mask[j, i, :] == False))
     # Check that the correct elements has been masked out:
     mask = sr.data.mask[:, :, 0]
     print(mask)   # To help debugging, this shows the shape of the mask
     np.testing.assert_array_equal(
         np.where(mask.flatten())[0],
         [0, 1, 6, 7, 8, 15, 48, 55, 56, 57, 62, 63])
     mask_ann = sr_ann.data.mask[:, :, 0]
     print(mask_ann)   # To help debugging, this shows the shape of the mask
     np.testing.assert_array_equal(
         np.where(mask_ann.flatten())[0],
         [0, 1, 6, 7, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 25,
          26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46,
          48, 50, 51, 52, 53, 55, 56, 57, 62, 63])
     # Check that mask works for sum
     assert np.sum(sr.data) == (n**2 - 3 * 4) * 4
     assert np.sum(sr_ann.data) == 4 * 5 * 4
コード例 #2
0
    def plot_corrected_diffraction_pattern(self, reference_circle=True):
        """Plot the distortion corrected diffraction pattern with an optional
        reference circle.

        Parameters
        ----------
        reference_circle : bool
            If True a CircleROI widget is added to the plot for reference.

        """
        # Check all required parameters are defined as attributes
        if self.calibration_data.au_x_grating_dp is None:
            raise ValueError("This method requires an Au X-grating diffraction "
                             "pattern to be provided. Please update the "
                             "CalibrationDataLibrary.")
        if self.affine_matrix is None:
            raise ValueError("This method requires a distortion matrix to have "
                             "been determined. Use get_elliptical_distortion "
                             "to determine this matrix.")
        # Set name for experimental data pattern
        dpeg = self.calibration_data.au_x_grating_dp
        # Apply distortion corrections to experimental data
        size = dpeg.data.shape[0]
        dpegs = stack_method([dpeg, dpeg, dpeg, dpeg])
        dpegs = ElectronDiffraction2D(dpegs.data.reshape((2, 2, size, size)))
        dpegs.apply_affine_transformation(self.affine_matrix,
                                          preserve_range=True,
                                          inplace=True)
        dpegm = dpegs.mean((0, 1))
        # Plot distortion corrected data
        dpegm.plot(cmap='magma', vmax=0.1)
        # add reference circle if specified
        if reference_circle is True:
            circ = CircleROI(cx=128, cy=128, r=53.5, r_inner=0)
            circ.add_widget(dpegm)
コード例 #3
0
 def test_repr_vals(self):
     repr(Point1DROI(1.1))
     repr(Point2DROI(1.1, 2.1))
     repr(Line2DROI(0, 0, 1, 1, 0.1))
     repr(RectangularROI(0, 0, 1, 1))
     repr(SpanROI(3., 5.))
     repr(CircleROI(5, 5, 3))
     repr(CircleROI(5, 5, 3, 1))
コード例 #4
0
 def test_interactive_special_case(self):
     s = self.s.inav[0]
     r = CircleROI(3, 5, 2)
     sr = r.interactive(s, None, color="blue")
     np.testing.assert_array_equal(
         np.where(sr.data.mask.flatten())[0], [0, 3, 12, 15])
     r.r_inner = 1
     r.cy = 16
     sr2 = r(s)
     np.testing.assert_array_equal(
         np.where(sr.data.mask.flatten())[0], [0, 3, 5, 6, 9, 10, 12, 15])
     np.testing.assert_array_equal(sr2.data, sr.data)
コード例 #5
0
ファイル: test_roi.py プロジェクト: AakashV/hyperspy
 def test_interactive_special_case(self):
     s = self.s.inav[0]
     r = CircleROI(3, 5, 2)
     sr = r.interactive(s, None)
     np.testing.assert_array_equal(np.where(sr.data.mask.flatten())[0],
                                   [0, 3, 12, 15])
     r.r_inner = 1
     r.cy = 16
     sr2 = r(s)
     np.testing.assert_array_equal(np.where(sr.data.mask.flatten())[0],
                                   [0, 3, 5, 6, 9, 10, 12, 15])
     np.testing.assert_array_equal(sr2.data, sr.data)
コード例 #6
0
 def test_out_special_case(self):
     s = self.s.inav[0]
     r = CircleROI(3, 5, 2)
     sr = r(s)
     np.testing.assert_array_equal(
         np.where(sr.data.mask.flatten())[0], [0, 3, 12, 15])
     r.r_inner = 1
     r.cy = 16
     sr2 = r(s)
     r(s, out=sr)
     np.testing.assert_array_equal(
         np.where(sr.data.mask.flatten())[0], [0, 3, 5, 6, 9, 10, 12, 15])
     np.testing.assert_array_equal(sr2.data, sr.data)
コード例 #7
0
ファイル: test_roi.py プロジェクト: woozey/hyperspy
    def test_circle_spec(self):
        s = self.s_s
        s.data = np.ones_like(s.data)
        r = CircleROI(20, 25, 20)
        r_ann = CircleROI(20, 25, 20, 15)
        sr = r(s)
        sr_ann = r_ann(s)
        scale = s.axes_manager[0].scale
        n = int(round(40 / scale))
        assert sr.axes_manager.navigation_shape == (n, n)
        assert sr_ann.axes_manager.navigation_shape == (n, n)
        # Check that mask is same for all images:
        for i in range(n):
            for j in range(n):
                assert (np.all(sr.data.mask[j, i, :] == True) or
                        np.all(sr.data.mask[j, i, :] == False))
                assert (np.all(sr_ann.data.mask[j, i, :] == True) or
                        np.all(sr_ann.data.mask[j, i, :] == False))
        # Check that the correct elements has been masked out:
        mask = sr.data.mask[:, :, 0]
        print(mask)   # To help debugging, this shows the shape of the mask
        np.testing.assert_array_equal(
            np.where(mask.flatten())[0],
            [0, 1, 6, 7, 8, 15, 48, 55, 56, 57, 62, 63])
        mask_ann = sr_ann.data.mask[:, :, 0]
        print(mask_ann)   # To help debugging, this shows the shape of the mask
        np.testing.assert_array_equal(
            np.where(mask_ann.flatten())[0],
            [0, 1, 6, 7, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 22, 25,
             26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46,
             48, 50, 51, 52, 53, 55, 56, 57, 62, 63])
        # Check that mask works for sum
        assert np.sum(sr.data) == (n**2 - 3 * 4) * 4
        assert np.sum(sr_ann.data) == 4 * 5 * 4

        s.plot()
        r_signal = r.interactive(signal=s)
        r_ann_signal = r_ann.interactive(signal=s)

        assert np.sum(r_signal.sum().data) == (n**2 - 3 * 4) * 4
        assert np.sum(r_ann_signal.sum().data) == 4 * 5 * 4
コード例 #8
0
 def test_annulus_getitem(self):
     r_ann = CircleROI(20, 25, 20, 15)
     assert tuple(r_ann) == (20, 25, 20, 15)
コード例 #9
0
 def test_circle_getitem(self):
     r = CircleROI(20, 25, 20)
     assert tuple(r) == (20, 25, 20)
コード例 #10
0
 def test_get_virtual_image(self, diffraction_pattern):
     roi = CircleROI(3, 3, 5)
     diffraction_pattern.get_virtual_image(roi)
コード例 #11
0
 def test_plot_interactive_virtual_image(self, diffraction_pattern):
     roi = CircleROI(3, 3, 5)
     diffraction_pattern.plot_interactive_virtual_image(roi)