コード例 #1
0
ファイル: mva.py プロジェクト: Gazworth/hyperspy
    def independent_components_analysis(
        self, number_of_components=None, algorithm='CuBICA', diff_order=1,
        factors=None, comp_list = None, mask = None, on_peaks=False, on_scores=False,
        pretreatment = None, **kwargs):
        """Independent components analysis.

        Available algorithms: FastICA, JADE, CuBICA, and TDSEP

        Parameters
        ----------
        number_of_components : int
            number of principal components to pass to the ICA algorithm
        algorithm : {FastICA, JADE, CuBICA, TDSEP}
        diff_order : int
        factors : numpy array
            externally provided components
        comp_list : boolen numpy array
            choose the components to use by the boolean list. It permits to
            choose non contiguous components.
        mask : numpy boolean array with the same dimension as the PC
            If not None, only the selected channels will be used by the
            algorithm.
        pretreatment: dict
        
        Any extra parameter is passed to the ICA algorithm
        """
        target=self._get_target(on_peaks)

        if not hasattr(target, 'factors') or target.factors==None:
            self.decomposition(on_peaks=on_peaks)

        else:
            if factors is None:
                if on_scores:
                    factors = target.scores
                else:
                    factors = target.factors
            bool_index = np.zeros((factors.shape[0]), dtype = 'bool')
            if number_of_components is not None:
                bool_index[:number_of_components] = True
            else:
                if self.output_dimension is not None:
                    number_of_components = self.output_dimension
                    bool_index[:number_of_components] = True

            if comp_list is not None:
                for ifactors in comp_list:
                    bool_index[ifactors] = True
                number_of_components = len(comp_list)
            factors = factors[:,bool_index]
            if diff_order > 0 and pretreatment is None:
                factors = np.diff(factors, diff_order, axis = 0)
            if pretreatment is not None:
                from hyperspy.signals.spectrum import Spectrum
                sfactors = Spectrum({'data' : factors.T})
                if pretreatment['algorithm'] == 'savitzky_golay':
                    sfactors.smooth_savitzky_golay(
                        number_of_points = pretreatment['number_of_points'],
                        polynomial_order = pretreatment['polynomial_order'],
                        differential_order = diff_order)
                if pretreatment['algorithm'] == 'tv':
                    sfactors.smooth_tv(
                        pretreatment_parameter= pretreatment[
                            'pretreatment_parameter'],
                        differential_order = diff_order)
                factors = sfactors.data.T
                if pretreatment['algorithm'] == 'butter':
                    b, a = sp.signal.butter(pretreatment['order'],
                        pretreatment['cutoff'], pretreatment['type'])
                    for i in range(factors.shape[1]):
                        factors[:,i] = sp.signal.filtfilt(b, a, factors[:,i])
            
            if mask is not None:
                factors = factors[mask.ravel(), :]

            # first centers and scales data
            factors,invsqcovmat = centering_and_whitening(factors)
            if algorithm == 'orthomax':
                _, unmixing_matrix = utils.orthomax(factors, **kwargs)
                unmixing_matrix = unmixing_matrix.T
            
            elif algorithm == 'sklearn_fastica':
                target.ica_node = sklearn.decomposition.FastICA(**kwargs)
                target.ica_node.whiten = False
                target.ica_node.fit(factors)
                unmixing_matrix = target.ica_node.unmixing_matrix_
            
            else:
                to_exec = 'target.ica_node=mdp.nodes.%sNode(' % algorithm
                for key, value in kwargs.iteritems():
                    to_exec += '%s=%s,' % (key, value)
                to_exec += ')'
                exec(to_exec)
                target.ica_node.train(factors)
                unmixing_matrix = target.ica_node.get_recmatrix()

            target.unmixing_matrix = np.dot(unmixing_matrix, invsqcovmat)
            self._unmix_factors(target)
            self._unmix_scores(target)
            self._auto_reverse_ic(target)
            target.ica_algorithm = algorithm
コード例 #2
0
ファイル: mva.py プロジェクト: AEljarrat/hyperspy
    def blind_source_separation(
        self,
        number_of_components=None,
        algorithm="sklearn_fastica",
        diff_order=1,
        factors=None,
        comp_list=None,
        mask=None,
        on_loadings=False,
        pretreatment=None,
        **kwargs
    ):
        """Blind source separation (BSS) on the result on the 
        decomposition.

        Available algorithms: FastICA, JADE, CuBICA, and TDSEP

        Parameters
        ----------
        number_of_components : int
            number of principal components to pass to the BSS algorithm
        algorithm : {FastICA, JADE, CuBICA, TDSEP}
        diff_order : int
            Sometimes it is convenient to perform the BSS on the derivative 
            of the signal. If diff_order is 0, the signal is not differentiated.
        factors : numpy.array
            Factors to decompose. If None, the BSS is performed on the result
            of a previous decomposition.
        comp_list : boolen numpy array
            choose the components to use by the boolean list. It permits
             to choose non contiguous components.
        mask : numpy boolean array with the same dimension as the signal
            If not None, the signal locations marked as True (masked) will 
            not be passed to the BSS algorithm.
        on_loadings : bool
            If True, perform the BSS on the loadings of a previous 
            decomposition. If False, performs it on the factors.
        pretreatment: dict
        
        **kwargs : extra key word arguments
            Any keyword arguments are passed to the BSS algorithm.
        
        """
        target = self.learning_results
        if not hasattr(target, "factors") or target.factors == None:
            raise AttributeError(
                "A decomposition must be performed before blind " "source seperation or factors must be provided."
            )
        else:
            if factors is None:
                if on_loadings:
                    factors = target.loadings
                else:
                    factors = target.factors
            bool_index = np.zeros((factors.shape[0]), dtype="bool")
            if number_of_components is not None:
                bool_index[:number_of_components] = True
            else:
                if target.output_dimension is not None:
                    number_of_components = target.output_dimension
                    bool_index[:number_of_components] = True

            if comp_list is not None:
                for ifactors in comp_list:
                    bool_index[ifactors] = True
                number_of_components = len(comp_list)
            factors = factors[:, bool_index]

            if pretreatment is not None:
                from hyperspy.signals.spectrum import Spectrum

                sfactors = Spectrum({"data": factors.T})
                if pretreatment["algorithm"] == "savitzky_golay":
                    sfactors.smooth_savitzky_golay(
                        number_of_points=pretreatment["number_of_points"],
                        polynomial_order=pretreatment["polynomial_order"],
                        differential_order=diff_order,
                    )
                if pretreatment["algorithm"] == "tv":
                    sfactors.smooth_tv(
                        smoothing_parameter=pretreatment["smoothing_parameter"], differential_order=diff_order
                    )
                factors = sfactors.data.T
                if pretreatment["algorithm"] == "butter":
                    b, a = sp.signal.butter(pretreatment["order"], pretreatment["cutoff"], pretreatment["type"])
                    for i in range(factors.shape[1]):
                        factors[:, i] = sp.signal.filtfilt(b, a, factors[:, i])
            elif diff_order > 0:
                factors = np.diff(factors, diff_order, axis=0)

            if mask is not None:
                factors = factors[~mask]

            # first center and scale the data
            factors, invsqcovmat = centering_and_whitening(factors)
            if algorithm == "orthomax":
                _, unmixing_matrix = utils.orthomax(factors, **kwargs)
                unmixing_matrix = unmixing_matrix.T

            elif algorithm == "sklearn_fastica":
                # if sklearn_installed is False:
                # raise ImportError(
                #'sklearn is not installed. Nothing done')
                if "tol" not in kwargs:
                    kwargs["tol"] = 1e-10
                target.bss_node = FastICA(**kwargs)
                target.bss_node.whiten = False
                target.bss_node.fit(factors)
                unmixing_matrix = target.bss_node.unmixing_matrix_
            else:
                if mdp_installed is False:
                    raise ImportError("MDP is not installed. Nothing done")
                to_exec = "target.bss_node=mdp.nodes.%sNode(" % algorithm
                for key, value in kwargs.iteritems():
                    to_exec += "%s=%s," % (key, value)
                to_exec += ")"
                exec (to_exec)
                target.bss_node.train(factors)
                unmixing_matrix = target.bss_node.get_recmatrix()

            target.unmixing_matrix = np.dot(unmixing_matrix, invsqcovmat)
            self._unmix_factors(target)
            self._unmix_loadings(target)
            self._auto_reverse_bss_component(target)
            target.bss_algorithm = algorithm