コード例 #1
0
def tune():
    X, y = get_data()

    too = torch.optim.Adam, torch.optim.Adadelta, torch.optim.Adagrad, torch.optim.ASGD
    to = ht.CategoricalParameter('torch_optimizer', options=too)
    eta = ht.ContinuousParameter('eta', lower_bound=1e-10, upper_bound=1e-1)
    mi = ht.DiscreteParameter('max_iter', lower_bound=1e2, upper_bound=1e4)

    hl1 = ht.DiscreteParameter('', lower_bound=10, upper_bound=100)
    hl2 = ht.DiscreteParameter('', lower_bound=10, upper_bound=100)
    hls = ht.TupleParameter('hidden_layer_sizes', values=(hl1, hl2))

    tp1 = ht.CategoricalParameter('', options=(nn.Linear, ))
    tp2 = ht.CategoricalParameter('', options=(nn.Linear, ))
    tp3 = ht.CategoricalParameter('', options=(nn.Linear, ))
    top = ht.TupleParameter('topology', values=(tp1, tp2, tp3))

    hypers = [to, eta, mi, hls, top]

    tuner = ht.HyperTune(algorithm=Net,
                         parameters=hypers,
                         train_func=Net.fit,
                         objective_func=Net.mse,
                         train_func_args=(X, y),
                         objective_func_args=(X, y),
                         max_evals=100,
                         maximize=False,
                         num_replications=1)

    tuner.tune()
    print(tuner.get_results())
コード例 #2
0
    def test_categorical_param(self):
        c = ht.CategoricalParameter('c', options=('a', 'b'))
        self.assertEqual(c.name, 'c')
        self.assertEqual(c.shape, 1)

        v = c.get_val([-1])
        self.assertEqual(v, 'a')

        co = ht.ContinuousParameter('co', lower_bound=0, upper_bound=1)
        con = ht.ConstantParameter('con', value=100)
        c = ht.CategoricalParameter('c', options=('a', co, con))
        self.assertEqual(c.shape, 2)
コード例 #3
0
            self._optimizer_.step()

    def mse(self, X, y):
        y_hat = self.predict(X)
        return self._loss_func_(y, y_hat).item()


# make an example dataset
p = 750
X = np.random.rand(10**4, 3)
y = np.random.rand(10**4)
X_train, X_test, y_train, y_test = X[:p], X[p:], y[:p], y[p:]

# define the target hyperparameters
too = torch.optim.Adam, torch.optim.Adadelta, torch.optim.Adagrad, torch.optim.ASGD
to = ht.CategoricalParameter('torch_optimizer', options=too)
eta = ht.ContinuousParameter('eta', lower_bound=1e-10, upper_bound=1e-1)
mi = ht.DiscreteParameter('max_iter', lower_bound=1e2, upper_bound=1e4)
hl1 = ht.DiscreteParameter('', lower_bound=10, upper_bound=100)
hl2 = ht.DiscreteParameter('', lower_bound=10, upper_bound=100)
hls = ht.TupleParameter('hidden_layer_sizes', values=(hl1, hl2))
tp1 = ht.CategoricalParameter('', options=(nn.Linear, ))
tp2 = ht.CategoricalParameter('', options=(nn.Linear, ))
tp3 = ht.CategoricalParameter('', options=(nn.Linear, ))
top = ht.TupleParameter('topology', values=(tp1, tp2, tp3))
hypers = [to, eta, mi, hls, top]

# define a Hypertune object
tuner = ht.HyperTune(algorithm=Net,
                     parameters=hypers,
                     train_func=Net.fit,
コード例 #4
0
ファイル: mlp2.py プロジェクト: brodderickrodriguez/hypertune
from sklearn.neural_network import MLPRegressor
import hypertune as ht
import numpy as np

# make an example dataset
p = 75
X = np.random.rand(100, 3)
y = np.random.rand(100)
X_train, X_test, y_train, y_test = X[:p], X[p:], y[:p], y[p:]

# define the target hyperparameters
activation = ht.CategoricalParameter('activation',
                                     options=('identity', 'logistic', 'tanh',
                                              'relu'))
learning_rate_init = ht.ContinuousParameter('learning_rate_init',
                                            lower_bound=10**-5,
                                            upper_bound=0.1)
max_iter = ht.DiscreteParameter('max_iter', lower_bound=500, upper_bound=10**3)

hl1 = ht.DiscreteParameter('', lower_bound=50, upper_bound=250)
hl2 = ht.DiscreteParameter('', lower_bound=100, upper_bound=250)
hl3 = ht.DiscreteParameter('', lower_bound=1, upper_bound=100)
hidden_layer_sizes = ht.TupleParameter('hidden_layer_sizes',
                                       values=(hl1, hl2, hl3))

hypers = [
    activation, learning_rate_init, max_iter, learning_rate, hidden_layer_sizes
]

# define a Hypertune object
tuner = ht.HyperTune(algorithm=MLPRegressor,
コード例 #5
0
    for i, (train_idxs, test_idxs) in enumerate(splits):
        X_train, y_train = X[train_idxs], y[train_idxs]
        X_test, y_test = X[test_idxs], y[test_idxs]

        algo.fit(X_train, y_train)
        results[i] = algo.score(X_test, y_test)

    return np.mean(results)


X, y = datasets.iris(return_splits=False)
splits = list(KFold(n_splits=4).split(X))

learning_rate = ht.CategoricalParameter('learning_rate',
                                        options=('constant', 'invscaling',
                                                 'adaptive'))
learning_rate_init = ht.ContinuousParameter('learning_rate_init',
                                            lower_bound=10**-5,
                                            upper_bound=0.1)
max_iter = ht.DiscreteParameter('max_iter', lower_bound=500, upper_bound=10**3)

hypers = [learning_rate, learning_rate_init, max_iter]

tuner = ht.HyperTune(algorithm=MLPClassifier,
                     parameters=hypers,
                     train_func=train,
                     objective_func=objective_func,
                     objective_func_args=(X, y, splits),
                     max_evals=10**2)