def main(): args = parser.parse_args() beta = 0.5 #get mutational data mvals = getMutationalData() ##load up interactome gfile = args.graph ##TODO: replace this with Docker image call g = pickle.load(open(gfile, 'rb')) key = 'mpnstPDXmuts' this_hyp = hyphalNetwork(mvals, g) this_hyp._to_file(key + '_hypha.pkl') ##read from file ###this is all we need to do in a single eval, then we can do tests later this_hyp.node_stats().to_csv(key + '_nodelist.csv') for_e = hyEnrich.go_enrich_forests(this_hyp) this_hyp.assign_enrichment(for_e, type='forest') for_e.to_csv(key + 'enrichedForestGoTerms.csv') com_e = hyEnrich.go_enrich_communities(this_hyp) this_hyp.assign_enrichment(com_e, type='community') this_hyp._to_file(key + '_hypha.pkl') com_e.to_csv(key + 'enrichedCommunityGOterms.csv') this_hyp.community_stats(prefix=key).to_csv(key + '_communityStats.csv') res = hyStats.compute_all_distances({'mutations': this_hyp}) res.to_csv('panPDXDistances.csv') nmi = hyStats.compute_all_nmi({'mutations': this_hyp}, g) nmi.to_csv('panPDXNMI.csv')
def main(): args = parser.parse_args() #this is a hack - fix this! bcData = prot.parsePDCfile('data/CPTAC2_Breast_Prospective_Collection_BI_Proteome.tmt10.tsv') ncbi = prot.map_ncbi_to_gene(bcData) if args.fromFile is None: hyphae = build_hyphae_from_data() else: hyphae = loadFromFile(args.fromFile) for key, this_hyp in hyphae.items(): this_hyp.node_stats().to_csv(key+'_nodelist.csv') if args.doEnrich: if len(this_hyp.forest_enrichment)==0: for_e = hype.go_enrich_forests(this_hyp, ncbi) this_hyp.assign_enrichment(for_e, type='forest') for_e.to_csv(key+'enrichedForestGoTerms.csv') this_hyp._to_file(key+'_hypha.pkl') if len(this_hyp.community_enrichment)==0: com_e = hype.go_enrich_communities(this_hyp, ncbi) this_hyp.assign_enrichment(com_e, type='community') this_hyp._to_file(key+'_hypha.pkl') com_e.to_csv(key+'enrichedCommunityGOterms.csv') ##next: compare enrichment between patients mapped to communities this_hyp.forest_stats().to_csv(key+'_communityStats.csv') this_hyp.community_stats(prefix=key).to_csv(key+'_communityStats.csv') #now compute graph distances to ascertain fidelity if args.getDist: res = compute_all_distances(hyphae) res.to_csv('panCancerDistances.csv')
def main(): args = parser.parse_args() if args.fromFile is None: hyphae = significant_genes(data, 'AML sample', 'Gene', 'LogFoldChange') else: hyphae = loadFromFile(args.fromFile) #now compute graph distances to ascertain fidelity if args.getDist: res = hyStats.compute_all_distances(hyphae) res.to_csv('proteomicdistances.csv') nmi = hyStats.compute_all_nmi(hyphae, g) nmi.to_csv('proteomic.csv') for key, this_hyp in hyphae.items(): this_hyp.node_stats().to_csv(key + '_nodelist.csv') if args.doEnrich: if len(this_hyp.forest_enrichment) == 0: for_e = hyEnrich.go_enrich_forests(this_hyp) #SG, ncbi) this_hyp.assign_enrichment(for_e, type='forest') for_e.to_csv(key + 'enrichedForestGoTerms.csv') this_hyp._to_file(key + '_hypha.pkl') if len(this_hyp.community_enrichment) == 0: com_e = hyEnrich.go_enrich_communities(this_hyp) this_hyp.assign_enrichment(com_e, type='community') this_hyp._to_file(key + '_hypha.pkl') com_e.to_csv(key + 'enrichedCommunityGOterms.csv') ##next: compare enrichment between patients mapped to communities this_hyp.community_stats(prefix=key).to_csv(key + '_communityStats.csv') this_hyp.forest_stats().to_csv(key + '_TreeStats.csv')
def main(): args = parser.parse_args() gfile = args.graph g = pickle.load(open(gfile, 'rb'))#hyp.make_graph_from_dict(gfile) if args.fromFile is None: hyphae = build_hyphae_from_data(args.qt, g, args.sample) else: hyphae = loadFromFile(args.fromFile) #now compute graph distances to ascertain fidelity if args.getDist: res = hyStats.compute_all_distances(hyphae) res.to_csv('panCancerDistances.csv') nmi = hyStats.compute_all_nmi(hyphae, g) nmi.to_csv('panCancerNMI.csv') for key, this_hyp in hyphae.items(): this_hyp.node_stats().to_csv(key+'_nodelist.csv') if args.doEnrich: if len(this_hyp.community_enrichment) == 0: com_e = hyEnrich.go_enrich_communities(this_hyp) this_hyp.assign_enrichment(com_e, type='community') this_hyp._to_file(key+'_hypha.pkl') com_e.to_csv(key+'enrichedCommunityGOterms.csv') ##next: compare enrichment between patients mapped to communities this_hyp.forest_stats().to_csv(key+'_TreeStats.csv') this_hyp.community_stats(prefix=key).to_csv(key+'_communityStats.csv')
def main(): gfile = '../../data/igraphPPI.pkl' g = pickle.load(open(gfile, 'rb')) #hyp.make_graph_from_dict(gfile) args = parser.parse_args() beta = 0.5 proteomics_dictionary = significant_prots(data, 'AML sample', 'Gene', 'LogFoldChange') gene_dictionary = tumor_genes(data, 'AML sample', 'Gene', 'Tumor VAF') if args.fromFile is None: hyphae = dict() hyphae['mutations'] = hyphalNetwork(gene_dictionary, g.copy(), beta) hyphae['proteomics'] = hyphalNetwork(proteomics_dictionary, g.copy(), beta) for key, this_hyp in hyphae.items(): this_hyp._to_file(key + '_amlPatientData_hypha.pkl') else: hyphae = loadFromFile(args.fromFile) #now compute graph distances to ascertain fidelity if args.getDist: res = hyStats.compute_all_distances(hyphae) res.to_csv('amlNetworkdistances.csv') tab = table.build_table("AML Network Distances", 'syn22128879', res) syn.store(tab) nmi = hyStats.compute_all_nmi(hyphae, g) nmi.to_csv('amlNMI.csv') syn.store(File('amlNMI.csv', parent='syn22269875')) #store distances for key, this_hyp in hyphae.items(): node_stats = this_hyp.node_stats() node_stats.to_csv(key + '_nodelist.csv') tab = table.build_table("AML Network Nodes", 'syn22128879', node_stats) syn.store(tab) if args.doEnrich: if len(this_hyp.forest_enrichment) == 0: for_e = hyEnrich.go_enrich_forests(this_hyp) #SG, ncbi) this_hyp.assign_enrichment(for_e, type='forest') for_e.to_csv(key + 'enrichedForestGoTerms.csv') syn.store( File(key + 'enrichedForestGoTerms.csv', parent='syn22269875')) this_hyp._to_file(key + '_amlPatientData_hypha.pkl') if len(this_hyp.community_enrichment) == 0: com_e = hyEnrich.go_enrich_communities(this_hyp) this_hyp.assign_enrichment(com_e, type='community') com_e.to_csv(key + 'enrichedCommunityGOterms.csv') syn.store( File(key + 'enrichedCommunityGOterms.csv', parent='syn22269875')) this_hyp._to_file(key + '_amlPatientData_hypha.pkl') ##next: compare enrichment between patients mapped to communities this_hyp.community_stats(prefix=key).to_csv(key + '_communityStats.csv') this_hyp.forest_stats().to_csv(key + '_TreeStats.csv') for files in [ key + '_amlPatientData_hypha.pkl', key + '_communityStats.csv', key + '_TreeStats.csv' ]: syn.store(File(files, parent='syn22269875'))