# print(feature) # print('feature counts: {0}'.format(len(features))) X_train = vect_val.transform(X_train) X_val = vect_val.transform(X_val) print('******** GridSearch ********') param_grid = { 'n_estimators': [40, 60, 80, 100, 120], 'learning_rate': [0.1, 0.15, 0.2], 'max_depth': [6, 7, 8, 9, 10] } scorer = make_scorer(f2) gs = GridSearch(model=GradientBoostingClassifier()) gs.fit(X_train, y_train, param_grid, X_val, y_val, scoring=scorer) print('params: ', gs.get_best_params()) print('Test Score for Optimized Parameters:', gs.score(X_val, y_val)) # print('******** GradientBoostingClassifier ********') # gb = GradientBoostingClassifier(learning_rate=0.1, n_estimators=80, max_depth=7) # gb, preds_train, preds = train_and_predict(gb, X_train, y_train, X_val) # print_scores(y_val, preds, y_train, preds_train) # # print('******** AdamBoostingClassifier ********') # ada = AdaBoostClassifier() # ada, preds_train, preds = train_and_predict(ada, X_train, y_train, X_val) # print_scores(y_val, preds, y_train, preds_train) # # print('******** XgBoostClassifier ********') # xgb = XGBClassifier() # xgb, preds_train, preds = train_and_predict(xgb, X_train, y_train, X_val)
print("Length of Train/Test:",len(X_train),len(X_dev)) params = { 'lr' : np.random.uniform(0,1,[5]).tolist() + [1.0], 'ada' : np.random.uniform(0,1,[5]).tolist() + [1.0], 'et' : np.random.uniform(0,1,[5]).tolist() + [1.0], 'xgb' : np.random.uniform(0,1,5).tolist() + [1.0], 'gb' : np.random.uniform(0,1,[5]).tolist() + [1.0], 'rf' : np.random.uniform(0,1,[5]).tolist() + [1.0], 'br' : np.random.uniform(0,1,5).tolist() + [1.0], 'lasso' : np.random.uniform(0,1,[5]).tolist() + [1.0], 'lrf' : [math.floor,math.ceil,avg], 'adaf' : [math.floor,math.ceil,avg], 'etf' : [math.floor,math.ceil,avg], 'xgbf' : [math.floor,math.ceil,avg], 'gbf' : [math.floor,math.ceil,avg], 'rff' :[math.floor,math.ceil,avg], 'brf' : [math.floor,math.ceil,avg], 'lassof' : [math.floor,math.ceil,avg], } model = GridSearch(N2C2Classifier(),param_grid=params) model.fit(X_train,y_train,X_dev,y_dev,verbose=True) print(model.get_best_params()) print(model.get_best_score())