コード例 #1
0
ファイル: test_regenie.py プロジェクト: timothymillar/sgkit
def monotonic_increasing_ints(draw: Any) -> NDArray:
    # Draw increasing ints with repeats, e.g. [0, 0, 5, 7, 7, 7]
    n = draw(st.integers(min_value=0, max_value=5))
    repeats = draw(
        st_arrays(dtype=int, shape=n, elements=st.integers(min_value=1, max_value=10))
    )
    values = draw(
        st_arrays(dtype=int, shape=n, elements=st.integers(min_value=0, max_value=10))
    )
    values = np.cumsum(values)
    return np.repeat(values, repeats)
コード例 #2
0
    def init_fields(self, data, backend):
        self.nx = data.draw(hyp_st.integers(min_value=7, max_value=32),
                            label="nx")
        self.ny = data.draw(hyp_st.integers(min_value=7, max_value=32),
                            label="ny")
        self.nz = data.draw(hyp_st.integers(min_value=1, max_value=32),
                            label="nz")
        shape = (self.nx, self.ny, self.nz)

        self.in_phi = gt_storage.from_array(
            data.draw(st_arrays(dtype=float, shape=shape)),
            backend=backend,
            default_origin=(0, 0, 0),
            dtype=float,
        )
        self.in_u = gt_storage.from_array(
            data.draw(st_arrays(dtype=float, shape=shape)),
            backend=backend,
            default_origin=(0, 0, 0),
            dtype=float,
        )
        self.in_v = gt_storage.from_array(
            data.draw(st_arrays(dtype=float, shape=shape)),
            backend=backend,
            default_origin=(0, 0, 0),
            dtype=float,
        )
        self.tmp_phi = gt_storage.from_array(
            data.draw(st_arrays(dtype=float, shape=shape)),
            backend=backend,
            default_origin=(1, 1, 0),
            dtype=float,
        )
        self.out_phi = gt_storage.from_array(
            data.draw(st_arrays(dtype=float, shape=shape)),
            backend=backend,
            default_origin=(3, 3, 0),
            dtype=float,
        )
        self.alpha = 1 / 32
コード例 #3
0
def test_small(client, model_data, hypothesis_data):
    """Test Triton-served model on many small Hypothesis-generated examples"""
    all_model_inputs = defaultdict(list)
    total_output_sizes = {}
    all_triton_outputs = defaultdict(list)
    default_arrays = {
        name: np.random.rand(TOTAL_SAMPLES, *shape).astype('float32')
        for name, shape in model_data.input_shapes.items()
    }

    for i in range(TOTAL_SAMPLES):
        model_inputs = {
            name: hypothesis_data.draw(
                st.one_of(
                    st.just(default_arrays[name][i:i+1, :]),
                    st_arrays('float32', [1] + shape)
                )
            ) for name, shape in model_data.input_shapes.items()
        }
        if model_data.name == 'sklearn' or model_data.name == 'xgboost_shap':
            for array in model_inputs.values():
                assume(not np.any(np.isnan(array)))
        model_output_sizes = {
            name: size
            for name, size in model_data.output_sizes.items()
        }
        shared_mem = hypothesis_data.draw(st.one_of(
            st.just(mode) for mode in valid_shm_modes()
        ))
        result = client.predict(
            model_data.name, model_inputs, model_data.output_sizes,
            shared_mem=shared_mem
        )
        for name, input_ in model_inputs.items():
            all_model_inputs[name].append(input_)
        for name, size in model_output_sizes.items():
            total_output_sizes[name] = total_output_sizes.get(name, 0) + size
        for name, output in result.items():
            all_triton_outputs[name].append(output)

    all_model_inputs = {
        name: np.concatenate(arrays)
        for name, arrays in all_model_inputs.items()
    }
    all_triton_outputs = {
        name: np.concatenate(arrays)
        for name, arrays in all_triton_outputs.items()
    }

    try:
        ground_truth = model_data.ground_truth_model.predict(all_model_inputs)
    except Exception:
        assume(False)

    for output_name in sorted(ground_truth.keys()):
        if model_data.ground_truth_model.predict_proba:
            arrays_close(
                all_triton_outputs[output_name],
                ground_truth[output_name],
                rtol=1e-3,
                atol=1e-2,
                assert_close=True
            )
        else:
            arrays_close(
                all_triton_outputs[output_name],
                ground_truth[output_name],
                atol=0.1,
                total_atol=3,
                assert_close=True
            )

    # Test entire batch of Hypothesis-generated inputs at once
    shared_mem = hypothesis_data.draw(st.one_of(
        st.just(mode) for mode in valid_shm_modes()
    ))
    all_triton_outputs = client.predict(
        model_data.name, all_model_inputs, total_output_sizes,
        shared_mem=shared_mem
    )

    for output_name in sorted(ground_truth.keys()):
        if model_data.ground_truth_model.predict_proba:
            arrays_close(
                all_triton_outputs[output_name],
                ground_truth[output_name],
                rtol=1e-3,
                atol=1e-2,
                assert_close=True
            )
        else:
            arrays_close(
                all_triton_outputs[output_name],
                ground_truth[output_name],
                atol=0.1,
                total_atol=3,
                assert_close=True
            )