コード例 #1
0
def test_step_stays_within_bounds(size):
    # indices -> (start, stop, step)
    # Stop is exclusive so we use -1 as the floor.
    # This uses the indices that slice produces to make this test more readable
    # due to how splice processes None being a little complex
    assert_all_examples(
        st.slices(size),
        lambda x: (
            x.indices(size)[0] + x.indices(size)[2] <= size
            and x.indices(size)[0] + x.indices(size)[2] >= -1
        )
        or x.start == x.stop,
    )
コード例 #2
0
        arrays(int, array_shapes(max_dims=1), elements=integers(0, n_tim - 1)),
        lists(integers(0, n_tim - 1)),
    )
)
def test_getitem_where(a):
    toas = get_TOAs(StringIO(tim), ephem="de421")
    m = toas.get_mjds()
    s = toas[a]
    assert len(s) == len(a)
    assert set(s.get_mjds()) == set(m[a])
    if len(s) > 0:
        assert np.all(s.table["mjd_float"] == s.table.group_by("obs")["mjd_float"])
        toas.get_summary()


@given(slices(n_tim))
def test_getitem_slice(c):
    toas = get_TOAs(StringIO(tim), ephem="de421")
    m = toas.get_mjds()
    s = toas[c]
    assert set(s.get_mjds()) == set(m[c])
    if len(s) > 0:
        assert np.all(s.table["mjd_float"] == s.table.group_by("obs")["mjd_float"])
        toas.get_summary()


def test_flag_column_reading():
    toas = get_TOAs(StringIO(tim), ephem="de421")
    assert (toas["flag"] == "other_thing").sum() == 1
    assert (toas["flag"] == "thing").sum() == len(toas) - 1
    assert (toas["other_flag"] == "another_thing").sum() == 1
コード例 #3
0
ファイル: strategies.py プロジェクト: lycantropos/cppbuiltins
def to_lists_pairs_with_slices(
    pair: AlternativeNativeListsPair
) -> Strategy[Tuple[AlternativeNativeListsPair, slice]]:
    alternative, _ = pair
    size = len(alternative)
    return strategies.tuples(strategies.just(pair), strategies.slices(size))
コード例 #4
0
def test_stop_stays_within_bounds(size):
    assert_all_examples(
        st.slices(size), lambda x: x.stop is None or (x.stop >= 0 and x.stop <= size)
    )
コード例 #5
0
def test_start_will_equal_stop(size):
    find_any(st.slices(size), lambda x: x.start == x.stop)
コード例 #6
0
def test_step_will_be_positive(size):
    find_any(st.slices(size), lambda x: x.step > 0)
コード例 #7
0
def test_slices_will_shrink(size):
    sliced = minimal(st.slices(size))
    assert sliced.start == 0 or sliced.start is None
    assert sliced.stop == 0 or sliced.stop is None
    assert sliced.step == 1
コード例 #8
0
def test_start_stay_within_bounds(size):
    assert_all_examples(
        st.slices(size),
        lambda x: x.start is None or (x.start >= -size and x.start <= size),
    )
コード例 #9
0
def test_step_will_be_positive(size):
    find_any(st.slices(size), lambda x: x.step > 0)
コード例 #10
0
def test_step_will_be_negative(size):
    find_any(st.slices(size), lambda x: x.step < 0)
コード例 #11
0
def test_slices_will_shrink(size):
    sliced = minimal(st.slices(size))
    assert sliced.start == 0 or sliced.start is None
    assert sliced.stop == 0 or sliced.stop is None
    assert sliced.step == 1
コード例 #12
0
def test_step_will_not_be_zero(size):
    assert_all_examples(st.slices(size), lambda x: x.step != 0)
コード例 #13
0
def test_start_stay_within_bounds(size):
    assert_all_examples(
        st.slices(size), lambda x: x.start is None or (x.start >= 0 and x.start <= size)
    )
コード例 #14
0
def test_size_is_equal_0():
    assert_all_examples(
        st.slices(0),
        lambda x: x.step != 0 and x.start is None and x.stop is None)
コード例 #15
0
def test_stop_will_equal_size(size):
    find_any(st.slices(size), lambda x: x.stop == size)
コード例 #16
0
def test_stop_stays_within_bounds(size):
    assert_all_examples(
        st.slices(size),
        lambda x: x.stop is None or (x.stop >= -size and x.stop <= size),
    )
コード例 #17
0
def test_start_will_equal_0(size):
    find_any(st.slices(size), lambda x: x.start == 0)
コード例 #18
0
def test_step_will_not_be_zero(size):
    assert_all_examples(st.slices(size), lambda x: x.step != 0)
コード例 #19
0
ファイル: test_slices.py プロジェクト: jjpal/hypothesis
def test_start_stay_within_bounds(size):
    assert_all_examples(
        st.slices(size).filter(lambda x: x.start is not None),
        lambda x: range(size)[x.start] or True,  # no IndexError raised
    )
コード例 #20
0
def test_step_will_be_negative(size):
    find_any(st.slices(size), lambda x: x.step < 0,
             settings(max_examples=10**6))
コード例 #21
0
def test_step_will_be_negative(size):
    find_any(st.slices(size), lambda x: x.step < 0)
コード例 #22
0
def test_start_will_equal_size(size):
    find_any(st.slices(size), lambda x: x.start == size - 1,
             settings(max_examples=10**6))
コード例 #23
0
def test_stop_will_equal_size(size):
    find_any(st.slices(size), lambda x: x.stop == size)
コード例 #24
0
def posvel_arrays_and_indices(draw):
    pos, vel = draw(posvel_arrays())
    ix = tuple(draw(slices(n)) for n in pos.shape[1:])
    return pos, vel, ix
コード例 #25
0
ファイル: test_util.py プロジェクト: chaburkland/static-frame
class TestUnit(TestCase):
    @given(get_array_1d2d())
    def test_mloc(self, array: np.ndarray) -> None:

        x = mloc(array)
        self.assertTrue(isinstance(x, int))

    @given(get_array_1d2d())
    def test_shape_filter(self, shape: np.ndarray) -> None:
        self.assertTrue(len(shape_filter(shape)), 2)

    @given(get_dtype_pairs())
    def test_resolve_dtype(self, dtype_pair: tp.Tuple[np.dtype,
                                                      np.dtype]) -> None:

        x = resolve_dtype(*dtype_pair)
        self.assertTrue(isinstance(x, np.dtype))

    @given(get_dtypes(min_size=1))
    def test_resolve_dtype_iter(self, dtypes: tp.Iterable[np.dtype]) -> None:

        x = resolve_dtype_iter(dtypes)
        self.assertTrue(isinstance(x, np.dtype))

    @given(get_labels(min_size=1))
    def test_resolve_type_iter(self, objects: tp.Iterable[object]) -> None:

        known_types = set(
            (None, type(None), bool, str, object, int, float, complex,
             datetime.date, datetime.datetime, fractions.Fraction))
        resolved, has_tuple, values_post = util.prepare_iter_for_array(objects)
        self.assertTrue(resolved in known_types)

    @given(get_arrays_2d_aligned_columns())
    def test_concat_resolved_axis_0(self, arrays: tp.List[np.ndarray]) -> None:
        array = util.concat_resolved(arrays, axis=0)
        self.assertEqual(array.ndim, 2)
        self.assertEqual(array.dtype,
                         resolve_dtype_iter((x.dtype for x in arrays)))

    @given(get_arrays_2d_aligned_rows())
    def test_concat_resolved_axis_1(self, arrays: tp.List[np.ndarray]) -> None:
        array = util.concat_resolved(arrays, axis=1)
        self.assertEqual(array.ndim, 2)
        self.assertEqual(array.dtype,
                         resolve_dtype_iter((x.dtype for x in arrays)))

    @given(get_dtype(), get_shape_1d2d(), get_value())
    def test_full_or_fill(self, dtype: np.dtype,
                          shape: tp.Union[tp.Tuple[int], tp.Tuple[int, int]],
                          value: object) -> None:
        array = util.full_for_fill(dtype, shape, fill_value=value)
        self.assertTrue(array.shape == shape)
        if isinstance(value, (float, complex)) and np.isnan(value):
            pass
        else:
            self.assertTrue(value in array)

    @given(get_dtype())
    def test_dtype_to_na(self, dtype: util.DtypeSpecifier) -> None:
        post = util.dtype_to_fill_value(dtype)
        self.assertTrue(post in {0, False, None, '', np.nan, util.NAT})

    @given(get_array_1d2d(dtype_group=DTGroup.NUMERIC))
    def test_ufunc_axis_skipna(self, array: np.ndarray) -> None:

        has_na = util.isna_array(array).any()

        for nt in UFUNC_AXIS_SKIPNA.values():
            ufunc = nt.ufunc
            ufunc_skipna = nt.ufunc_skipna
            # dtypes = nt.dtypes
            # composable = nt.composable
            # doc = nt.doc_header
            # size_one_unity = nt.size_one_unity

            with np.errstate(over='ignore', under='ignore', divide='ignore'):

                post = util.array_ufunc_axis_skipna(array=array,
                                                    skipna=True,
                                                    axis=0,
                                                    ufunc=ufunc,
                                                    ufunc_skipna=ufunc_skipna)
                if array.ndim == 2:
                    self.assertTrue(post.ndim == 1)

    @given(get_array_1d2d())
    def test_ufunc_unique(self, array: np.ndarray) -> None:
        post = util.ufunc_unique(array, axis=0)
        self.assertTrue(len(post) <= array.shape[0])

    @given(get_array_1d(min_size=1), st.integers())
    def test_roll_1d(self, array: np.ndarray, shift: int) -> None:
        post = util.roll_1d(array, shift)
        self.assertEqual(len(post), len(array))
        self.assertEqualWithNaN(array[-(shift % len(array))], post[0])

    @given(get_array_2d(min_rows=1, min_columns=1), st.integers())
    def test_roll_2d(self, array: np.ndarray, shift: int) -> None:
        for axis in (0, 1):
            post = util.roll_2d(array, shift=shift, axis=axis)
            self.assertEqual(post.shape, array.shape)

            start = -(shift % array.shape[axis])

            if axis == 0:
                a = array[start]
                b = post[0]
            else:
                a = array[:, start]
                b = post[:, 0]

            self.assertAlmostEqualValues(a, b)

    @given(get_array_1d(dtype_group=DTGroup.OBJECT))
    def test_iterable_to_array_a(self, array: np.ndarray) -> None:
        values = array.tolist()
        post, _ = util.iterable_to_array_1d(values)
        self.assertAlmostEqualValues(post, values)

        # explicitly giving object dtype
        post, _ = util.iterable_to_array_1d(values, dtype=util.DTYPE_OBJECT)
        self.assertAlmostEqualValues(post, values)

    @given(get_labels())
    def test_iterable_to_array_b(self, labels: tp.Iterable[tp.Any]) -> None:
        post, _ = util.iterable_to_array_1d(labels)
        self.assertAlmostEqualValues(post, labels)
        self.assertTrue(isinstance(post, np.ndarray))

    @given(get_labels())
    def test_iterable_to_array_nd(self, labels: tp.Iterable[tp.Any]) -> None:
        post = util.iterable_to_array_nd(labels)
        self.assertAlmostEqualValues(post, labels)
        self.assertTrue(isinstance(post, np.ndarray))

        if len(labels):  #type: ignore
            sample = post[0]
            post = util.iterable_to_array_nd(sample)
            self.assertTrue(isinstance(post, np.ndarray))

    @given(st.slices(10))  #pylint: disable=E1120
    def test_slice_to_ascending_slice(self, key: slice) -> None:

        post_key = util.slice_to_ascending_slice(key, size=10)
        self.assertEqual(set(range(*key.indices(10))),
                         set(range(*post_key.indices(10))))

    # to_datetime64
    # to_timedelta64
    # key_to_datetime_key

    @given(get_array_1d2d())
    def test_array_to_groups_and_locations(self, array: np.ndarray) -> None:

        groups, locations = util.array_to_groups_and_locations(array, 0)

        if len(array) > 0:
            self.assertTrue(len(groups) >= 1)

        # always 1dm locations
        self.assertTrue(locations.ndim == 1)
        self.assertTrue(len(np.unique(locations)) == len(groups))

    @given(get_array_1d2d())
    def test_isna_array(self, array: np.ndarray) -> None:

        post = util.isna_array(array)
        self.assertTrue(post.dtype == bool)

        values = np.ravel(array)
        count_na = sum(isna_element(x) for x in values)

        self.assertTrue(np.ravel(post).sum() == count_na)

    @given(get_array_1d(dtype_group=DTGroup.BOOL))
    def test_binary_transition(self, array: np.ndarray) -> None:
        post = util.binary_transition(array)

        # could be 32 via result of np.nonzero
        self.assertTrue(post.dtype in (np.int32, np.int64))

        # if no True in original array, result will be empty
        if array.sum() == 0:
            self.assertTrue(len(post) == 0)
        # if all True, result is empty
        elif array.sum() == len(array):
            self.assertTrue(len(post) == 0)
        else:
            # the post selection shold always be indices that are false
            self.assertTrue(array[post].sum() == 0)

    @given(get_array_1d2d())
    def test_array_to_duplicated(self, array: np.ndarray) -> None:
        if array.ndim == 2:
            for axis in (0, 1):
                post = util.array_to_duplicated(array, axis=axis)
                if axis == 0:
                    unique_count = len(set(tuple(x) for x in array))
                else:
                    unique_count = len(
                        set(tuple(array[:, i]) for i in range(array.shape[1])))
                if unique_count < array.shape[axis]:
                    self.assertTrue(post.sum() > 0)
        else:
            post = util.array_to_duplicated(array)
            # if not all value are unique, we must have some duplicated
            if len(set(array)) < len(array):
                self.assertTrue(post.sum() > 0)

        self.assertTrue(post.dtype == bool)

    @given(get_array_1d2d())
    def test_array_shift(self, array: np.ndarray) -> None:

        for shift in (-1, 1):
            for wrap in (True, False):

                tests = []
                post1 = util.array_shift(array=array,
                                         shift=shift,
                                         axis=0,
                                         wrap=wrap)
                tests.append(post1)

                if array.ndim == 2:
                    post2 = util.array_shift(array=array,
                                             shift=shift,
                                             axis=1,
                                             wrap=wrap)
                    tests.append(post2)

                for post in tests:
                    self.assertTrue(array.shape == post.shape)

                    # type is only always maintained if we are wrapping
                    if wrap:
                        self.assertTrue(array.dtype == post.dtype)

    #---------------------------------------------------------------------------

    @given(st.lists(get_array_1d(), min_size=2, max_size=2))
    def test_union1d(self, arrays: tp.Sequence[np.ndarray]) -> None:
        if datetime64_not_aligned(arrays[0], arrays[1]):
            return

        post = util.union1d(arrays[0], arrays[1], assume_unique=False)
        self.assertTrue(post.ndim == 1)

        # the unqiueness of NaNs has changed in newer NP versions, so only compare if non-nans are found
        if post.dtype.kind in ('c', 'f') and not np.isnan(post).any():
            self.assertTrue(len(post) == len(set(arrays[0]) | set(arrays[1])))
        # complex results are tricky to compare after forming sets
        if (post.dtype.kind not in ('O', 'M', 'm', 'c', 'f')
                and not np.isnan(post).any()):
            self.assertSetEqual(set(post), (set(arrays[0]) | set(arrays[1])))

    @given(st.lists(get_array_1d(), min_size=2, max_size=2))
    def test_intersect1d(self, arrays: tp.Sequence[np.ndarray]) -> None:
        if datetime64_not_aligned(arrays[0], arrays[1]):
            return
        post = util.intersect1d(arrays[0], arrays[1], assume_unique=False)
        self.assertTrue(post.ndim == 1)
        # nan values in complex numbers make direct comparison tricky
        self.assertTrue(len(post) == len(set(arrays[0]) & set(arrays[1])))

        if (post.dtype.kind not in ('O', 'M', 'm', 'c', 'f')
                and not np.isnan(post).any()):
            self.assertSetEqual(set(post), (set(arrays[0]) & set(arrays[1])))

    @given(st.lists(get_array_1d(), min_size=2, max_size=2))
    def test_setdiff1d(self, arrays: tp.Sequence[np.ndarray]) -> None:
        if datetime64_not_aligned(arrays[0], arrays[1]):
            return

        post = util.setdiff1d(arrays[0], arrays[1], assume_unique=False)
        self.assertTrue(post.ndim == 1)

        if post.dtype.kind in ('f', 'c', 'i', 'u'):
            # Compare directly to numpy behavior for number values.
            self.assertTrue(
                len(post) == len(
                    np.setdiff1d(arrays[0], arrays[1], assume_unique=False)))
        else:
            # nan values in complex numbers make direct comparison tricky
            self.assertTrue(
                len(post) == len(set(arrays[0]).difference(set(arrays[1]))))

        if (post.dtype.kind not in ('O', 'M', 'm', 'c', 'f')
                and not np.isnan(post).any()):
            self.assertSetEqual(set(post),
                                (set(arrays[0]).difference(set(arrays[1]))))

    #---------------------------------------------------------------------------

    @given(get_arrays_2d_aligned_columns(min_size=2, max_size=2))
    def test_union2d(self, arrays: tp.Sequence[np.ndarray]) -> None:
        if datetime64_not_aligned(arrays[0], arrays[1]):
            return

        post = util.union2d(arrays[0], arrays[1], assume_unique=False)
        self.assertTrue(post.ndim == 2)

        if post.dtype.kind in ('f', 'c') and np.isnan(post).any():
            return

        self.assertTrue(
            len(post) == len(
                set(util.array2d_to_tuples(arrays[0]))
                | set(util.array2d_to_tuples(arrays[1]))))

    @given(get_arrays_2d_aligned_columns(min_size=2, max_size=2))
    def test_intersect2d(self, arrays: tp.Sequence[np.ndarray]) -> None:
        if datetime64_not_aligned(arrays[0], arrays[1]):
            return

        post = util.intersect2d(arrays[0], arrays[1], assume_unique=False)
        self.assertTrue(post.ndim == 2)
        self.assertTrue(
            len(post) == len(
                set(util.array2d_to_tuples(arrays[0]))
                & set(util.array2d_to_tuples(arrays[1]))))

    @given(get_arrays_2d_aligned_columns(min_size=2, max_size=2))
    def test_setdiff2d(self, arrays: tp.Sequence[np.ndarray]) -> None:
        if datetime64_not_aligned(arrays[0], arrays[1]):
            return

        for array in arrays:
            if array.dtype.kind in ('f', 'c') and np.isnan(array).any():
                return

        post = util.setdiff2d(arrays[0], arrays[1], assume_unique=False)
        self.assertTrue(post.ndim == 2)
        self.assertTrue(
            len(post) == len(
                set(util.array2d_to_tuples(arrays[0])).difference(
                    set(util.array2d_to_tuples(arrays[1])))))

    @given(get_arrays_2d_aligned_columns(min_size=2))
    def test_array_set_ufunc_many(self,
                                  arrays: tp.Sequence[np.ndarray]) -> None:
        if datetime64_not_aligned(arrays[0], arrays[1]):
            return

        for union in (True, False):
            post = util.ufunc_set_iter(arrays, union=union)
            self.assertTrue(post.ndim == 2)

    #---------------------------------------------------------------------------

    @given(get_array_1d2d(min_rows=1, min_columns=1))
    def test_isin(self, array: np.ndarray) -> None:

        container_factory = (list, set, np.array)
        result = None

        if array.ndim == 1:
            sample = array[0]
            if np.array(sample).dtype.kind in DTYPE_INEXACT_KINDS and np.isnan(
                    sample):
                pass
            else:
                for factory in container_factory:
                    result = util.isin(array, factory((sample, )))
                    self.assertTrue(result[0])
        elif array.ndim == 2:
            sample = array[0, 0]
            if np.array(sample).dtype.kind in DTYPE_INEXACT_KINDS and np.isnan(
                    sample):
                pass
            else:
                for factory in container_factory:
                    result = util.isin(array, factory((sample, )))
                    self.assertTrue(result[0, 0])

        if result is not None:
            self.assertTrue(array.shape == result.shape)
            self.assertTrue(result.dtype == bool)