def create_files(self): config = self.returnn_config config.write(self.out_returnn_config_file.get_path()) cmd = self._get_run_cmd() util.create_executable("rnn.sh", cmd) # check here if model actually exists assert os.path.exists( tk.uncached_path(self.model_checkpoint.index_path) ), "Provided model does not exists: %s" % str(self.model_checkpoint)
def create_files(self): # returnn shutil.copy( tk.uncached_path(self.returnn_config_file_in), tk.uncached_path(self.returnn_config_file), ) parameter_list = self.get_parameter_list() cmd = [ tk.uncached_path(self.returnn_python_exe), os.path.join(tk.uncached_path(self.returnn_root), "rnn.py"), self.returnn_config_file.get_path(), ] + parameter_list util.create_executable("rnn.sh", cmd)
def create_files(self): config = self.create_returnn_config( model_checkpoint=self._model_checkpoint, returnn_config=self._returnn_config, log_verbosity=self._log_verbosity, device=self._device) config.write(self.out_returnn_config_file.get_path()) cmd = [ tk.uncached_path(self.returnn_python_exe), os.path.join(tk.uncached_path(self.returnn_root), 'rnn.py'), self.out_returnn_config_file.get_path() ] util.create_executable("rnn.sh", cmd) # check here if model actually exists assert os.path.exists(self._model_checkpoint.index_path.get_path()), \ "Provided model does not exists: %s" % str(self._model_checkpoint)
def run(self): cmd = [ sys.executable, os.path.join(tk.uncached_path(self.subword_nmt_repo), "apply_bpe.py"), "--input", self.text_file.get_path(), "--codes", self.bpe_codes.get_path(), "--output", self.out_bpe_text.get_path(), ] if self.bpe_vocab: cmd += ["--vocabulary", self.bpe_vocab.get_path()] util.create_executable("apply_bpe.sh", cmd) sp.run(cmd, check=True)
def run(self): bpe_codes_cmd = [ sys.executable, os.path.join(tk.uncached_path(self.subword_nmt_repo), "learn_bpe.py"), "--output", self.out_bpe_codes.get_path(), "--symbols", str(self.bpe_size), ] util.create_executable("create_bpe_codes.sh", bpe_codes_cmd) with util.uopen(self.text_file, "rb") as f: p = sp.Popen( bpe_codes_cmd, stdin=sp.PIPE, stdout=sys.stdout, stderr=sys.stderr ) while True: data = f.read(4096) if len(data) > 0: p.stdin.write(data) else: break p.communicate() assert p.returncode == 0 bpe_vocab_cmd = [ sys.executable, os.path.join(tk.uncached_path(self.subword_nmt_repo), "create-py-vocab.py"), "--txt", self.text_file.get_path(), "--bpe", self.out_bpe_codes.get_path(), "--unk", self.unk_label, "--out", self.out_bpe_vocab.get_path(), ] util.create_executable("create_bpe_vocab.sh", bpe_vocab_cmd) sp.run(bpe_vocab_cmd, check=True) with util.uopen(self.out_bpe_vocab) as f: num_labels = max(list(eval(f.read()).values())) + 1 # 0-based index self.out_vocab_size.set(num_labels)
def run(self): self.returnn_config.write("returnn.config") command = [ self.returnn_python_exe.get(), os.path.join(self.returnn_root.get(), "tools/dump-dataset.py"), "returnn.config", "--endseq -1", "--stats", "--dump_stats stats", ] create_executable("rnn.sh", command) subprocess.check_call(["./rnn.sh"]) shutil.move("stats.mean.txt", self.out_mean_file.get_path()) shutil.move("stats.std_dev.txt", self.out_std_dev_file.get_path()) total_mean = 0 total_var = 0 with open(self.out_mean_file.get_path()) as mean_file, open( self.out_std_dev_file.get_path()) as std_dev_file: # compute the total mean and std-dev in an iterative way for i, (mean, std_dev) in enumerate(zip(mean_file, std_dev_file)): mean = float(mean) var = float(std_dev.strip())**2 mean_variance = (total_mean - mean)**2 adjusted_mean_variance = mean_variance * i / (i + 1) total_var = (total_var * i + var + adjusted_mean_variance) / (i + 1) total_mean = (total_mean * i + mean) / (i + 1) self.out_mean.set(total_mean) self.out_std_dev.set(numpy.sqrt(total_var))
def create_files(self): self.returnn_config.write(self.out_returnn_config_file.get_path()) util.create_executable("rnn.sh", self._get_run_cmd())