def __getitem__(self, idx): img_path = os.path.join(self.img_root, self.filenames[idx]) img = Image.open(img_path).convert("RGB") boxes = self.anno_box[str(idx)] boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes target = BoxList(boxes, img.size, mode="xyxy") classes = self.anno_cat[str(idx)] # classes = [self.json_category_id_to_contiguous_id[c] for c in classes] classes = torch.tensor(classes) - 1 target.add_field("labels", classes) try: assert img.size[1] == self.img_info[idx]['height'] and img.size[ 0] == self.img_info[idx]['width'] except AssertionError: print(self.filenames[idx]) w, h = img.size[0], img.size[1] sizes = [[w, h] for i in range(boxes.size(0))] sizes = torch.tensor(sizes) target.add_field("orignal_size", sizes) idxx = [idx for i in range(boxes.size(0))] idxx = torch.tensor(idxx) target.add_field("idx", idxx) target = target.clip_to_image(remove_empty=True) if self.transforms is not None: img, target = self.transforms(img, target) return img, target, idx
def forward_for_single_feature_map(self, anchors, objectness, box_regression): """ Arguments: anchors: list[BoxList] objectness: tensor of size N, A, H, W box_regression: tensor of size N, A * 4, H, W """ device = objectness.device N, A, H, W = objectness.shape # put in the same format as anchors objectness = permute_and_flatten(objectness, N, A, 1, H, W).view(N, -1) objectness = objectness.sigmoid() box_regression = permute_and_flatten(box_regression, N, A, 4, H, W) num_anchors = A * H * W pre_nms_top_n = min(self.pre_nms_top_n, num_anchors) objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True) batch_idx = torch.arange(N, device=device)[:, None] box_regression = box_regression[batch_idx, topk_idx] image_shapes = [box.size for box in anchors] concat_anchors = torch.cat([a.bbox for a in anchors], dim=0) concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx] proposals = self.box_coder.decode( box_regression.view(-1, 4), concat_anchors.view(-1, 4) ) proposals = proposals.view(N, -1, 4) result = [] for proposal, score, im_shape in zip(proposals, objectness, image_shapes): boxlist = BoxList(proposal, im_shape, mode="xyxy") boxlist.add_field("objectness", score) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) boxlist = boxlist_nms( boxlist, self.nms_thresh, max_proposals=self.post_nms_top_n, score_field="objectness", ) result.append(boxlist) return result
def prepare_boxlist(self, boxes, scores, image_shape): """ Returns BoxList from `boxes` and adds probability scores information as an extra field `boxes` has shape (#detections, 4 * #classes), where each row represents a list of predicted bounding boxes for each of the object classes in the dataset (including the background class). The detections in each row originate from the same object proposal. `scores` has shape (#detection, #classes), where each row represents a list of object detection confidence scores for each of the object classes in the dataset (including the background class). `scores[i, j]`` corresponds to the box at `boxes[i, j * 4:(j + 1) * 4]`. """ boxes = boxes.reshape(-1, 4) scores = scores.reshape(-1) boxlist = BoxList(boxes, image_shape, mode="xyxy") boxlist.add_field("scores", scores) return boxlist
def __getitem__(self, item): img = Image.open(self.image_lists[item]).convert("RGB") # dummy target w, h = img.size target = BoxList([[0, 0, w, h]], img.size, mode="xyxy") if self.transforms is not None: img, target = self.transforms(img, target) return img, target
def forward(self, x, boxes): """ Arguments: x (Tensor): the mask logits boxes (list[BoxList]): bounding boxes that are used as reference, one for each image Returns: results (list[BoxList]): one BoxList for each image, containing the extra field mask """ mask_prob = x.sigmoid() # select masks coresponding to the predicted classes num_masks = x.shape[0] labels = [bbox.get_field("labels") for bbox in boxes] labels = torch.cat(labels) index = torch.arange(num_masks, device=labels.device) mask_prob = mask_prob[index, labels][:, None] boxes_per_image = [len(box) for box in boxes] mask_prob = mask_prob.split(boxes_per_image, dim=0) if self.masker: mask_prob = self.masker(mask_prob, boxes) results = [] for prob, box in zip(mask_prob, boxes): bbox = BoxList(box.bbox, box.size, mode="xyxy") for field in box.fields(): bbox.add_field(field, box.get_field(field)) bbox.add_field("mask", prob) results.append(bbox) return results
def __getitem__(self, idx): image_id = self._image_ids[idx] img_name = self.img_info[idx]['path'] img_path = os.path.join(self.img_root, img_name) img = Image.open(img_path).convert("RGB") with self.env.begin(write=False) as txn: item = pickle.loads(txn.get(image_id)) image_id_ = item['image_id'] image_h = int(item['image_h']) image_w = int(item['image_w']) num_boxes = int(item['num_boxes']) boxes = np.frombuffer(base64.b64decode(item['boxes']), dtype=np.float32).reshape(num_boxes, 4) boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes target = BoxList(boxes, img.size, mode="xyxy") try: assert img.size[1] == image_h and img.size[0] == image_w except AssertionError: print(image_id) w, h = img.size[0], img.size[1] sizes = [[w, h] for i in range(boxes.size(0))] sizes = torch.tensor(sizes) target.add_field("orignal_size", sizes) image_id_all = [int(image_id) for i in range(boxes.size(0))] image_id_all = torch.tensor(image_id_all) target.add_field("image_id", image_id_all) numm = [num_boxes for i in range(boxes.size(0))] numm = torch.tensor(numm) target.add_field("num_box", numm) target = target.clip_to_image(remove_empty=False) if self.transforms is not None: img, target = self.transforms(img, target) return img, target, idx
def forward(self, image_list, feature_maps): grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps] anchors_over_all_feature_maps = self.grid_anchors(grid_sizes) anchors = [] for i, (image_height, image_width) in enumerate(image_list.image_sizes): anchors_in_image = [] for anchors_per_feature_map in anchors_over_all_feature_maps: boxlist = BoxList(anchors_per_feature_map, (image_width, image_height), mode="xyxy") self.add_visibility_to(boxlist) anchors_in_image.append(boxlist) anchors.append(anchors_in_image) return anchors
def get_groundtruth(self, index): img_id = self.ids[index] anno = ET.parse(self._annopath % img_id).getroot() anno = self._preprocess_annotation(anno) height, width = anno["im_info"] target = BoxList(anno["boxes"], (width, height), mode="xyxy") target.add_field("labels", anno["labels"]) target.add_field("difficult", anno["difficult"]) return target
def _test_feature_extractors( self, extractors, overwrite_cfgs, overwrite_in_channels ): ''' Make sure roi box feature extractors run ''' self.assertGreater(len(extractors), 0) in_channels_default = 64 for name, builder in extractors.items(): print('Testing {}...'.format(name)) if name in overwrite_cfgs: cfg = load_config(overwrite_cfgs[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) in_channels = overwrite_in_channels.get( name, in_channels_default) fe = builder(cfg, in_channels) self.assertIsNotNone( getattr(fe, 'out_channels', None), 'Need to provide out_channels for feature extractor {}'.format(name) ) N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) bboxes = [[1, 1, 10, 10], [5, 5, 8, 8], [2, 2, 3, 4]] img_size = [384, 512] box_list = BoxList(bboxes, img_size, "xyxy") out = fe([input], [box_list] * N) self.assertEqual( out.shape[:2], torch.Size([N * len(bboxes), fe.out_channels]) )
def select_over_all_levels(self, boxlists): num_images = len(boxlists) results = [] for i in range(num_images): scores = boxlists[i].get_field("scores") labels = boxlists[i].get_field("labels") boxes = boxlists[i].bbox boxlist = boxlists[i] result = [] # skip the background for j in range(1, self.num_classes): inds = (labels == j).nonzero().view(-1) scores_j = scores[inds] boxes_j = boxes[inds, :].view(-1, 4) boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy") boxlist_for_class.add_field("scores", scores_j) boxlist_for_class = boxlist_nms(boxlist_for_class, self.nms_thresh, score_field="scores") num_labels = len(boxlist_for_class) boxlist_for_class.add_field( "labels", torch.full((num_labels, ), j, dtype=torch.int64, device=scores.device)) result.append(boxlist_for_class) result = cat_boxlist(result) number_of_detections = len(result) # Limit to max_per_image detections **over all classes** if number_of_detections > self.fpn_post_nms_top_n > 0: cls_scores = result.get_field("scores") image_thresh, _ = torch.kthvalue( cls_scores.cpu(), number_of_detections - self.fpn_post_nms_top_n + 1) keep = cls_scores >= image_thresh.item() keep = torch.nonzero(keep).squeeze(1) result = result[keep] results.append(result) return results
def filter_results(self, boxlist, num_classes): """Returns bounding-box detection results by thresholding on scores and applying non-maximum suppression (NMS). """ # unwrap the boxlist to avoid additional overhead. # if we had multi-class NMS, we could perform this directly on the boxlist boxes = boxlist.bbox.reshape(-1, num_classes * 4) scores = boxlist.get_field("scores").reshape(-1, num_classes) device = scores.device result = [] # Apply threshold on detection probabilities and apply NMS # Skip j = 0, because it's the background class inds_all = scores > self.score_thresh for j in range(1, num_classes): inds = inds_all[:, j].nonzero().squeeze(1) scores_j = scores[inds, j] boxes_j = boxes[inds, j * 4:(j + 1) * 4] boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy") boxlist_for_class.add_field("scores", scores_j) boxlist_for_class = boxlist_nms(boxlist_for_class, self.nms) num_labels = len(boxlist_for_class) boxlist_for_class.add_field( "labels", torch.full((num_labels, ), j, dtype=torch.int64, device=device)) result.append(boxlist_for_class) result = cat_boxlist(result) number_of_detections = len(result) # Limit to max_per_image detections **over all classes** if number_of_detections > self.detections_per_img > 0: cls_scores = result.get_field("scores") image_thresh, _ = torch.kthvalue( cls_scores.cpu(), number_of_detections - self.detections_per_img + 1) keep = cls_scores >= image_thresh.item() keep = torch.nonzero(keep).squeeze(1) result = result[keep] return result
def forward(self, x, boxes): mask_prob = x scores = None if self.keypointer: mask_prob, scores = self.keypointer(x, boxes) assert len(boxes) == 1, "Only non-batched inference supported for now" boxes_per_image = [box.bbox.size(0) for box in boxes] mask_prob = mask_prob.split(boxes_per_image, dim=0) scores = scores.split(boxes_per_image, dim=0) results = [] for prob, box, score in zip(mask_prob, boxes, scores): bbox = BoxList(box.bbox, box.size, mode="xyxy") for field in box.fields(): bbox.add_field(field, box.get_field(field)) prob = PersonKeypoints(prob, box.size) prob.add_field("logits", score) bbox.add_field("keypoints", prob) results.append(bbox) return results
def __getitem__(self, idx): img_path = self.img_paths[idx] ann_path = self.ann_paths[idx] if self.mode == "mask": ann = torch.from_numpy(np.asarray(Image.open(ann_path))) # masks are represented with tensors boxes, segmentations, labels = self._processBinayMasks(ann) else: with open(ann_path, "r") as ann_file: ann = json.load(ann_file) # masks are represented with polygons boxes, segmentations, labels = self._processPolygons(ann) boxes, segmentations, labels = self._filterGT(boxes, segmentations, labels) if len(segmentations) == 0: empty_ann_path = self.get_img_info(idx)["ann_path"] print("EMPTY ENTRY:", empty_ann_path) # self.img_paths.pop(idx) # self.ann_paths.pop(idx) img, target, _ = self[(idx + 1) % len(self)] # just override this image with the next return img, target, idx img = Image.open(img_path) # Compose all into a BoxList instance target = BoxList(boxes, img.size, mode="xyxy") target.add_field("labels", torch.tensor(labels)) masks = SegmentationMask(segmentations, img.size, mode=self.mode) target.add_field("masks", masks) if self.transforms is not None: img, target = self.transforms(img, target) return img, target, idx
def calc_detection_voc_prec_rec(gt_boxlists, pred_boxlists, iou_thresh=0.5): """Calculate precision and recall based on evaluation code of PASCAL VOC. This function calculates precision and recall of predicted bounding boxes obtained from a dataset which has :math:`N` images. The code is based on the evaluation code used in PASCAL VOC Challenge. """ n_pos = defaultdict(int) score = defaultdict(list) match = defaultdict(list) for gt_boxlist, pred_boxlist in zip(gt_boxlists, pred_boxlists): pred_bbox = pred_boxlist.bbox.numpy() pred_label = pred_boxlist.get_field("labels").numpy() pred_score = pred_boxlist.get_field("scores").numpy() gt_bbox = gt_boxlist.bbox.numpy() gt_label = gt_boxlist.get_field("labels").numpy() gt_difficult = gt_boxlist.get_field("difficult").numpy() for l in np.unique(np.concatenate((pred_label, gt_label)).astype(int)): pred_mask_l = pred_label == l pred_bbox_l = pred_bbox[pred_mask_l] pred_score_l = pred_score[pred_mask_l] # sort by score order = pred_score_l.argsort()[::-1] pred_bbox_l = pred_bbox_l[order] pred_score_l = pred_score_l[order] gt_mask_l = gt_label == l gt_bbox_l = gt_bbox[gt_mask_l] gt_difficult_l = gt_difficult[gt_mask_l] n_pos[l] += np.logical_not(gt_difficult_l).sum() score[l].extend(pred_score_l) if len(pred_bbox_l) == 0: continue if len(gt_bbox_l) == 0: match[l].extend((0, ) * pred_bbox_l.shape[0]) continue # VOC evaluation follows integer typed bounding boxes. pred_bbox_l = pred_bbox_l.copy() pred_bbox_l[:, 2:] += 1 gt_bbox_l = gt_bbox_l.copy() gt_bbox_l[:, 2:] += 1 iou = boxlist_iou( BoxList(pred_bbox_l, gt_boxlist.size), BoxList(gt_bbox_l, gt_boxlist.size), ).numpy() gt_index = iou.argmax(axis=1) # set -1 if there is no matching ground truth gt_index[iou.max(axis=1) < iou_thresh] = -1 del iou selec = np.zeros(gt_bbox_l.shape[0], dtype=bool) for gt_idx in gt_index: if gt_idx >= 0: if gt_difficult_l[gt_idx]: match[l].append(-1) else: if not selec[gt_idx]: match[l].append(1) else: match[l].append(0) selec[gt_idx] = True else: match[l].append(0) n_fg_class = max(n_pos.keys()) + 1 prec = [None] * n_fg_class rec = [None] * n_fg_class for l in n_pos.keys(): score_l = np.array(score[l]) match_l = np.array(match[l], dtype=np.int8) order = score_l.argsort()[::-1] match_l = match_l[order] tp = np.cumsum(match_l == 1) fp = np.cumsum(match_l == 0) # If an element of fp + tp is 0, # the corresponding element of prec[l] is nan. prec[l] = tp / (fp + tp) # If n_pos[l] is 0, rec[l] is None. if n_pos[l] > 0: rec[l] = tp / n_pos[l] return prec, rec
def forward_for_single_feature_map(self, anchors, box_cls, box_regression): """ Arguments: anchors: list[BoxList] box_cls: tensor of size N, A * C, H, W box_regression: tensor of size N, A * 4, H, W """ device = box_cls.device N, _, H, W = box_cls.shape A = box_regression.size(1) // 4 C = box_cls.size(1) // A # put in the same format as anchors box_cls = permute_and_flatten(box_cls, N, A, C, H, W) box_cls = box_cls.sigmoid() box_regression = permute_and_flatten(box_regression, N, A, 4, H, W) num_anchors = A * H * W candidate_inds = box_cls > self.pre_nms_thresh pre_nms_top_n = candidate_inds.view(N, -1).sum(1) pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n) results = [] for per_box_cls, per_box_regression, per_pre_nms_top_n, \ per_candidate_inds, per_anchors in zip( box_cls, box_regression, pre_nms_top_n, candidate_inds, anchors): # Sort and select TopN # TODO most of this can be made out of the loop for # all images. # TODO:Yang: Not easy to do. Because the numbers of detections are # different in each image. Therefore, this part needs to be done # per image. per_box_cls = per_box_cls[per_candidate_inds] per_box_cls, top_k_indices = \ per_box_cls.topk(per_pre_nms_top_n, sorted=False) per_candidate_nonzeros = \ per_candidate_inds.nonzero()[top_k_indices, :] per_box_loc = per_candidate_nonzeros[:, 0] per_class = per_candidate_nonzeros[:, 1] per_class += 1 detections = self.box_coder.decode( per_box_regression[per_box_loc, :].view(-1, 4), per_anchors.bbox[per_box_loc, :].view(-1, 4)) boxlist = BoxList(detections, per_anchors.size, mode="xyxy") boxlist.add_field("labels", per_class) boxlist.add_field("scores", per_box_cls) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) results.append(boxlist) return results
def evaluate_box_proposals(predictions, dataset, thresholds=None, area="all", limit=None): """Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """ # Record max overlap value for each gt box # Return vector of overlap values areas = { "all": 0, "small": 1, "medium": 2, "large": 3, "96-128": 4, "128-256": 5, "256-512": 6, "512-inf": 7, } area_ranges = [ [0**2, 1e5**2], # all [0**2, 32**2], # small [32**2, 96**2], # medium [96**2, 1e5**2], # large [96**2, 128**2], # 96-128 [128**2, 256**2], # 128-256 [256**2, 512**2], # 256-512 [512**2, 1e5**2], ] # 512-inf assert area in areas, "Unknown area range: {}".format(area) area_range = area_ranges[areas[area]] gt_overlaps = [] num_pos = 0 for image_id, prediction in enumerate(predictions): original_id = dataset.id_to_img_map[image_id] img_info = dataset.get_img_info(image_id) image_width = img_info["width"] image_height = img_info["height"] prediction = prediction.resize((image_width, image_height)) # sort predictions in descending order # TODO maybe remove this and make it explicit in the documentation inds = prediction.get_field("objectness").sort(descending=True)[1] prediction = prediction[inds] ann_ids = dataset.coco.getAnnIds(imgIds=original_id) anno = dataset.coco.loadAnns(ann_ids) gt_boxes = [obj["bbox"] for obj in anno if obj["iscrowd"] == 0] gt_boxes = torch.as_tensor(gt_boxes).reshape( -1, 4) # guard against no boxes gt_boxes = BoxList(gt_boxes, (image_width, image_height), mode="xywh").convert("xyxy") gt_areas = torch.as_tensor( [obj["area"] for obj in anno if obj["iscrowd"] == 0]) if len(gt_boxes) == 0: continue valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) gt_boxes = gt_boxes[valid_gt_inds] num_pos += len(gt_boxes) if len(gt_boxes) == 0: continue if len(prediction) == 0: continue if limit is not None and len(prediction) > limit: prediction = prediction[:limit] overlaps = boxlist_iou(prediction, gt_boxes) _gt_overlaps = torch.zeros(len(gt_boxes)) for j in range(min(len(prediction), len(gt_boxes))): # find which proposal box maximally covers each gt box # and get the iou amount of coverage for each gt box max_overlaps, argmax_overlaps = overlaps.max(dim=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ovr, gt_ind = max_overlaps.max(dim=0) assert gt_ovr >= 0 # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert _gt_overlaps[j] == gt_ovr # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps.append(_gt_overlaps) gt_overlaps = torch.cat(gt_overlaps, dim=0) gt_overlaps, _ = torch.sort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) recalls = torch.zeros_like(thresholds) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return { "ar": ar, "recalls": recalls, "thresholds": thresholds, "gt_overlaps": gt_overlaps, "num_pos": num_pos, }
def im_detect_bbox_aug(model, images, device): # Collect detections computed under different transformations boxlists_ts = [] for _ in range(len(images)): boxlists_ts.append([]) def add_preds_t(boxlists_t): for i, boxlist_t in enumerate(boxlists_t): if len(boxlists_ts[i]) == 0: # The first one is identity transform, no need to resize the boxlist boxlists_ts[i].append(boxlist_t) else: # Resize the boxlist as the first one boxlists_ts[i].append(boxlist_t.resize(boxlists_ts[i][0].size)) # Compute detections for the original image (identity transform) boxlists_i = im_detect_bbox(model, images, cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MAX_SIZE_TEST, device) add_preds_t(boxlists_i) # Perform detection on the horizontally flipped image if cfg.TEST.BBOX_AUG.H_FLIP: boxlists_hf = im_detect_bbox_hflip(model, images, cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MAX_SIZE_TEST, device) add_preds_t(boxlists_hf) # Compute detections at different scales for scale in cfg.TEST.BBOX_AUG.SCALES: max_size = cfg.TEST.BBOX_AUG.MAX_SIZE boxlists_scl = im_detect_bbox_scale(model, images, scale, max_size, device) add_preds_t(boxlists_scl) if cfg.TEST.BBOX_AUG.SCALE_H_FLIP: boxlists_scl_hf = im_detect_bbox_scale(model, images, scale, max_size, device, hflip=True) add_preds_t(boxlists_scl_hf) # Merge boxlists detected by different bbox aug params boxlists = [] for i, boxlist_ts in enumerate(boxlists_ts): bbox = torch.cat([boxlist_t.bbox for boxlist_t in boxlist_ts]) scores = torch.cat( [boxlist_t.get_field('scores') for boxlist_t in boxlist_ts]) boxlist = BoxList(bbox, boxlist_ts[0].size, boxlist_ts[0].mode) boxlist.add_field('scores', scores) boxlists.append(boxlist) # Apply NMS and limit the final detections results = [] post_processor = make_roi_box_post_processor(cfg) for boxlist in boxlists: results.append( post_processor.filter_results(boxlist, cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES)) return results
def __getitem__(self, idx): img, anno = super(COCODataset, self).__getitem__(idx) anno = [obj for obj in anno if obj["iscrowd"] == 0] w, h = img.size[0], img.size[1] if self.is_train: # assert len(anno) >= 3 boxes = [obj["bbox"] for obj in anno] boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes classes = [obj["category_id"] for obj in anno] classes = [ self.json_category_id_to_contiguous_id[c] for c in classes ] classes = torch.tensor(classes) - 1 image_id = [obj['image_id'] for obj in anno] image_id = torch.tensor(image_id) sizes = [[w, h] for obj in anno] sizes = torch.tensor(sizes) target = BoxList(boxes, img.size, mode="xywh").convert("xyxy") # for feature extraction during testing (bottom up bbox here) else: image_id_bu = str(self.id_to_img_map[idx]) BOXES_PATH = os.path.join(self.box_dir, image_id_bu) + '.npy' if os.path.exists(BOXES_PATH): # if bbox exists boxes = np.load(BOXES_PATH) else: # use trained markcrnn to get bbox print(type(img)) print(img) boxes = getBBoxes(img) print(boxes) num_box = boxes.shape[0] boxes = torch.from_numpy(boxes) #boxes = torch.tensor(boxes) # record the num of boxes in image to make sure the preprocess is right num_box = [num_box for i in range(boxes.size(0))] num_box = torch.tensor(num_box) sizes = [[w, h] for i in range(boxes.size(0))] sizes = torch.tensor(sizes) image_id = [int(image_id_bu) for i in range(boxes.size(0))] image_id = torch.tensor(image_id) classes = [0 for i in range(boxes.size(0))] classes = torch.tensor(classes) # NOTE that the bounding box format of bottom-up feature is different with COCO target = BoxList(boxes, img.size, mode="xyxy") target.add_field("num_box", num_box) target.add_field("labels", classes) target.add_field("image_id", image_id) target.add_field("orignal_size", sizes) target = target.clip_to_image(remove_empty=False) if self._transforms is not None: img, target = self._transforms(img, target) return img, target, idx