コード例 #1
0
task_list = [
    'archi_standard', 'archi_spatial', 'archi_social', 'archi_emotional',
    'hcp_language', 'hcp_social', 'hcp_gambling', 'hcp_motor', 'hcp_emotion',
    'hcp_relational', 'hcp_wm', 'rsvp_language'
]

# BIDS conversion of task names
# Load dictionary file
with open(os.path.join('bids_postprocessed.json'), 'r') as f:
    task_dic = json.load(f)

TASKS = [task_dic[tkey] for tkey in task_list]
TASKS = flatten(TASKS)

df = data_parser(derivatives=SMOOTH_DERIVATIVES,
                 subject_list=SUBJECTS,
                 conditions=CONTRASTS,
                 task_list=TASKS)

# Mask of the grey matter across subjects
_package_directory = os.path.dirname(
    os.path.abspath(ibc_public.utils_data.__file__))
mask_gm = os.path.join(_package_directory, '../ibc_data',
                       'gm_mask_1_5mm.nii.gz')

data_dir = SMOOTH_DERIVATIVES
masker = NiftiMasker(mask_img=mask_gm, memory=write_dir).fit()


def append_correlation(imgs, masker, correlations=[]):
    X = masker.transform(imgs)
    corr_matrix = np.triu(np.corrcoef(X), 1)
コード例 #2
0
            display_mode=display_mode,
            cut_coords=[cut],
            black_bg=True,
            annotate=False,
            dim=0,  # title=subject,
            colorbar=False,
            view_type='filled_contours',
            linewidths=2.)
        axes.axis('off')
    fig.savefig(os.path.join(write_dir, 'snapshot_%s.pdf' % name),
                facecolor='k',
                dpi=300)
    # plt.close(fig)


db = data_parser(derivatives=SMOOTH_DERIVATIVES, conditions=CONTRASTS)
# db = db[db.task.isin(task_list)]
mask_gm = nib.load(os.path.join(DERIVATIVES, 'group', 'anat',
                                'gm_mask.nii.gz'))
masker = NiftiMasker(mask_img=mask_gm, memory=mem).fit()

write_dir = 'output'
if not os.path.exists(write_dir):
    os.mkdir(write_dir)
"""
task_contrast = [('archi_social', 'false_belief-mechanistic_video'),
                 ('archi_social', 'false_belief-mechanistic_audio'),
                 ('archi_social', 'triangle_mental-random'),
                 ('hcp_social', 'mental-random')]
plot_contrasts(db, task_contrast, masker, write_dir, cut=-50, display_mode='x',
               name='social')