コード例 #1
0
def fix_splits_interaction(ibs):
    """
    python -m ibeis fix_splits_interaction --show

    Example:
        >>> # DISABLE_DOCTEST GGR
        >>> from ibeis.other.dbinfo import *  # NOQA
        >>> import ibeis
        >>> dbdir = '/media/danger/GGR/GGR-IBEIS'
        >>> dbdir = dbdir if ut.checkpath(dbdir) else ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS')
        >>> ibs = ibeis.opendb(dbdir=dbdir, allow_newdir=False)
        >>> import guitool_ibeis as gt
        >>> gt.ensure_qtapp()
        >>> win = fix_splits_interaction(ibs)
        >>> ut.quit_if_noshow()
        >>> import plottool_ibeis as pt
        >>> gt.qtapp_loop(qwin=win)
    """
    split_props = {'splitcase', 'photobomb'}
    all_annot_groups = ibs._annot_groups(ibs.group_annots_by_name(ibs.get_valid_aids())[0])
    all_has_split = [len(split_props.intersection(ut.flatten(tags))) > 0 for tags in all_annot_groups.match_tags]
    tosplit_annots = ut.compress(all_annot_groups.annots_list, all_has_split)

    tosplit_annots = ut.take(tosplit_annots, ut.argsort(ut.lmap(len, tosplit_annots)))[::-1]
    if ut.get_argflag('--reverse'):
        tosplit_annots = tosplit_annots[::-1]
    print('len(tosplit_annots) = %r' % (len(tosplit_annots),))
    aids_list = [a.aids for a in tosplit_annots]

    from ibeis.algo.graph import graph_iden
    from ibeis.viz import viz_graph2
    import guitool_ibeis as gt
    import plottool_ibeis as pt
    pt.qt4ensure()
    gt.ensure_qtapp()

    for aids in ut.InteractiveIter(aids_list):
        infr = graph_iden.AnnotInference(ibs, aids)
        infr.initialize_graph()
        win = viz_graph2.AnnotGraphWidget(infr=infr, use_image=False,
                                          init_mode='rereview')
        win.populate_edge_model()
        win.show()
    return win
コード例 #2
0
def split_analysis(ibs):
    """
    CommandLine:
        python -m ibeis.other.dbinfo split_analysis --show
        python -m ibeis split_analysis --show
        python -m ibeis split_analysis --show --good

    Ignore:
        # mount
        sshfs -o idmap=user lev:/ ~/lev

        # unmount
        fusermount -u ~/lev

    Example:
        >>> # DISABLE_DOCTEST GGR
        >>> from ibeis.other.dbinfo import *  # NOQA
        >>> import ibeis
        >>> dbdir = '/media/danger/GGR/GGR-IBEIS'
        >>> dbdir = dbdir if ut.checkpath(dbdir) else ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS')
        >>> ibs = ibeis.opendb(dbdir=dbdir, allow_newdir=False)
        >>> import guitool_ibeis as gt
        >>> gt.ensure_qtapp()
        >>> win = split_analysis(ibs)
        >>> ut.quit_if_noshow()
        >>> import plottool_ibeis as pt
        >>> gt.qtapp_loop(qwin=win)
        >>> #ut.show_if_requested()
    """
    #nid_list = ibs.get_valid_nids(filter_empty=True)
    import datetime
    day1 = datetime.date(2016, 1, 30)
    day2 = datetime.date(2016, 1, 31)

    filter_kw = {
        'multiple': None,
        #'view': ['right'],
        #'minqual': 'good',
        'is_known': True,
        'min_pername': 1,
    }
    aids1 = ibs.filter_annots_general(filter_kw=ut.dict_union(
        filter_kw, {
            'min_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day1, 0.0)),
            'max_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day1, 1.0)),
        })
    )
    aids2 = ibs.filter_annots_general(filter_kw=ut.dict_union(
        filter_kw, {
            'min_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day2, 0.0)),
            'max_unixtime': ut.datetime_to_posixtime(ut.date_to_datetime(day2, 1.0)),
        })
    )
    all_aids = aids1 + aids2
    all_annots = ibs.annots(all_aids)
    print('%d annots on day 1' % (len(aids1)) )
    print('%d annots on day 2' % (len(aids2)) )
    print('%d annots overall' % (len(all_annots)) )
    print('%d names overall' % (len(ut.unique(all_annots.nids))) )

    nid_list, annots_list = all_annots.group(all_annots.nids)

    REVIEWED_EDGES = True
    if REVIEWED_EDGES:
        aids_list = [annots.aids for annots in annots_list]
        #aid_pairs = [annots.get_am_aidpairs() for annots in annots_list]  # Slower
        aid_pairs = ibs.get_unflat_am_aidpairs(aids_list)  # Faster
    else:
        # ALL EDGES
        aid_pairs = [annots.get_aidpairs() for annots in annots_list]

    speeds_list = ibs.unflat_map(ibs.get_annotpair_speeds, aid_pairs)
    import vtool_ibeis as vt
    max_speeds = np.array([vt.safe_max(s, nans=False) for s in speeds_list])

    nan_idx = np.where(np.isnan(max_speeds))[0]
    inf_idx = np.where(np.isinf(max_speeds))[0]
    bad_idx = sorted(ut.unique(ut.flatten([inf_idx, nan_idx])))
    ok_idx = ut.index_complement(bad_idx, len(max_speeds))

    print('#nan_idx = %r' % (len(nan_idx),))
    print('#inf_idx = %r' % (len(inf_idx),))
    print('#ok_idx = %r' % (len(ok_idx),))

    ok_speeds = max_speeds[ok_idx]
    ok_nids = ut.take(nid_list, ok_idx)
    ok_annots = ut.take(annots_list, ok_idx)
    sortx = np.argsort(ok_speeds)[::-1]

    sorted_speeds = np.array(ut.take(ok_speeds, sortx))
    sorted_annots = np.array(ut.take(ok_annots, sortx))
    sorted_nids = np.array(ut.take(ok_nids, sortx))  # NOQA

    sorted_speeds = np.clip(sorted_speeds, 0, 100)

    #idx = vt.find_elbow_point(sorted_speeds)
    #EXCESSIVE_SPEED = sorted_speeds[idx]
    # http://www.infoplease.com/ipa/A0004737.html
    # http://www.speedofanimals.com/animals/zebra
    #ZEBRA_SPEED_MAX  = 64  # km/h
    #ZEBRA_SPEED_RUN  = 50  # km/h
    ZEBRA_SPEED_SLOW_RUN  = 20  # km/h
    #ZEBRA_SPEED_FAST_WALK = 10  # km/h
    #ZEBRA_SPEED_WALK = 7  # km/h

    MAX_SPEED = ZEBRA_SPEED_SLOW_RUN
    #MAX_SPEED = ZEBRA_SPEED_WALK
    #MAX_SPEED = EXCESSIVE_SPEED

    flags = sorted_speeds > MAX_SPEED
    flagged_ok_annots = ut.compress(sorted_annots, flags)
    inf_annots = ut.take(annots_list, inf_idx)
    flagged_annots = inf_annots + flagged_ok_annots

    print('MAX_SPEED = %r km/h' % (MAX_SPEED,))
    print('%d annots with infinite speed' % (len(inf_annots),))
    print('%d annots with large speed' % (len(flagged_ok_annots),))
    print('Marking all pairs of annots above the threshold as non-matching')

    from ibeis.algo.graph import graph_iden
    import networkx as nx
    progkw = dict(freq=1, bs=True, est_window=len(flagged_annots))

    bad_edges_list = []
    good_edges_list = []
    for annots in ut.ProgIter(flagged_annots, lbl='flag speeding names', **progkw):
        edge_to_speeds = annots.get_speeds()
        bad_edges = [edge for edge, speed in edge_to_speeds.items() if speed > MAX_SPEED]
        good_edges = [edge for edge, speed in edge_to_speeds.items() if speed <= MAX_SPEED]
        bad_edges_list.append(bad_edges)
        good_edges_list.append(good_edges)
    all_bad_edges = ut.flatten(bad_edges_list)
    good_edges_list = ut.flatten(good_edges_list)
    print('num_bad_edges = %r' % (len(ut.flatten(bad_edges_list)),))
    print('num_bad_edges = %r' % (len(ut.flatten(good_edges_list)),))

    if 1:
        from ibeis.viz import viz_graph2
        import guitool_ibeis as gt
        gt.ensure_qtapp()

        if ut.get_argflag('--good'):
            print('Looking at GOOD (no speed problems) edges')
            aid_pairs = good_edges_list
        else:
            print('Looking at BAD (speed problems) edges')
            aid_pairs = all_bad_edges
        aids = sorted(list(set(ut.flatten(aid_pairs))))
        infr = graph_iden.AnnotInference(ibs, aids, verbose=False)
        infr.initialize_graph()

        # Use random scores to randomize sort order
        rng = np.random.RandomState(0)
        scores = (-rng.rand(len(aid_pairs)) * 10).tolist()
        infr.graph.add_edges_from(aid_pairs)

        if True:
            edge_sample_size = 250
            pop_nids = ut.unique(ibs.get_annot_nids(ut.unique(ut.flatten(aid_pairs))))
            sorted_pairs = ut.sortedby(aid_pairs, scores)[::-1][0:edge_sample_size]
            sorted_nids = ibs.get_annot_nids(ut.take_column(sorted_pairs, 0))
            sample_size = len(ut.unique(sorted_nids))
            am_rowids = ibs.get_annotmatch_rowid_from_undirected_superkey(*zip(*sorted_pairs))
            flags = ut.not_list(ut.flag_None_items(am_rowids))
            #am_rowids = ut.compress(am_rowids, flags)
            positive_tags = ['SplitCase', 'Photobomb']
            flags_list = [ut.replace_nones(ibs.get_annotmatch_prop(tag, am_rowids), 0)
                          for tag in positive_tags]
            print('edge_case_hist: ' + ut.repr3(
                ['%s %s' % (txt, sum(flags_)) for flags_, txt in zip(flags_list, positive_tags)]))
            is_positive = ut.or_lists(*flags_list)
            num_positive = sum(ut.lmap(any, ut.group_items(is_positive, sorted_nids).values()))
            pop = len(pop_nids)
            print('A positive is any edge flagged as a %s' % (ut.conj_phrase(positive_tags, 'or'),))
            print('--- Sampling wrt edges ---')
            print('edge_sample_size  = %r' % (edge_sample_size,))
            print('edge_population_size = %r' % (len(aid_pairs),))
            print('num_positive_edges = %r' % (sum(is_positive)))
            print('--- Sampling wrt names ---')
            print('name_population_size = %r' % (pop,))
            vt.calc_error_bars_from_sample(sample_size, num_positive, pop, conf_level=.95)

        nx.set_edge_attributes(infr.graph, name='score', values=dict(zip(aid_pairs, scores)))

        win = viz_graph2.AnnotGraphWidget(infr=infr, use_image=False,
                                          init_mode=None)
        win.populate_edge_model()
        win.show()
        return win
        # Make review interface for only bad edges

    infr_list = []
    iter_ = list(zip(flagged_annots, bad_edges_list))
    for annots, bad_edges in ut.ProgIter(iter_, lbl='creating inference', **progkw):
        aids = annots.aids
        nids = [1] * len(aids)
        infr = graph_iden.AnnotInference(ibs, aids, nids, verbose=False)
        infr.initialize_graph()
        infr.reset_feedback()
        infr_list.append(infr)

    # Check which ones are user defined as incorrect
    #num_positive = 0
    #for infr in infr_list:
    #    flag = np.any(infr.get_feedback_probs()[0] == 0)
    #    num_positive += flag
    #print('num_positive = %r' % (num_positive,))
    #pop = len(infr_list)
    #print('pop = %r' % (pop,))

    iter_ = list(zip(infr_list, bad_edges_list))
    for infr, bad_edges in ut.ProgIter(iter_, lbl='adding speed edges', **progkw):
        flipped_edges = []
        for aid1, aid2 in bad_edges:
            if infr.graph.has_edge(aid1, aid2):
                flipped_edges.append((aid1, aid2))
            infr.add_feedback((aid1, aid2), NEGTV)
        nx.set_edge_attributes(infr.graph, name='_speed_split', values='orig')
        nx.set_edge_attributes(infr.graph, name='_speed_split', values={edge: 'new' for edge in bad_edges})
        nx.set_edge_attributes(infr.graph, name='_speed_split', values={edge: 'flip' for edge in flipped_edges})

    #for infr in ut.ProgIter(infr_list, lbl='flagging speeding edges', **progkw):
    #    annots = ibs.annots(infr.aids)
    #    edge_to_speeds = annots.get_speeds()
    #    bad_edges = [edge for edge, speed in edge_to_speeds.items() if speed > MAX_SPEED]

    def inference_stats(infr_list_):
        relabel_stats = []
        for infr in infr_list_:
            num_ccs, num_inconsistent = infr.relabel_using_reviews()
            state_hist = ut.dict_hist(nx.get_edge_attributes(infr.graph, 'decision').values())
            if POSTV not in state_hist:
                state_hist[POSTV] = 0
            hist = ut.dict_hist(nx.get_edge_attributes(infr.graph, '_speed_split').values())

            subgraphs = infr.positive_connected_compoments()
            subgraph_sizes = [len(g) for g in subgraphs]

            info = ut.odict([
                ('num_nonmatch_edges', state_hist[NEGTV]),
                ('num_match_edges', state_hist[POSTV]),
                ('frac_nonmatch_edges',  state_hist[NEGTV] / (state_hist[POSTV] + state_hist[NEGTV])),
                ('num_inconsistent', num_inconsistent),
                ('num_ccs', num_ccs),
                ('edges_flipped', hist.get('flip', 0)),
                ('edges_unchanged', hist.get('orig', 0)),
                ('bad_unreviewed_edges', hist.get('new', 0)),
                ('orig_size', len(infr.graph)),
                ('new_sizes', subgraph_sizes),
            ])
            relabel_stats.append(info)
        return relabel_stats

    relabel_stats = inference_stats(infr_list)

    print('\nAll Split Info:')
    lines = []
    for key in relabel_stats[0].keys():
        data = ut.take_column(relabel_stats, key)
        if key == 'new_sizes':
            data = ut.flatten(data)
        lines.append('stats(%s) = %s' % (key, ut.repr2(ut.get_stats(data, use_median=True), precision=2)))
    print('\n'.join(ut.align_lines(lines, '=')))

    num_incon_list = np.array(ut.take_column(relabel_stats, 'num_inconsistent'))
    can_split_flags = num_incon_list == 0
    print('Can trivially split %d / %d' % (sum(can_split_flags), len(can_split_flags)))

    splittable_infrs = ut.compress(infr_list, can_split_flags)

    relabel_stats = inference_stats(splittable_infrs)

    print('\nTrival Split Info:')
    lines = []
    for key in relabel_stats[0].keys():
        if key in ['num_inconsistent']:
            continue
        data = ut.take_column(relabel_stats, key)
        if key == 'new_sizes':
            data = ut.flatten(data)
        lines.append('stats(%s) = %s' % (
            key, ut.repr2(ut.get_stats(data, use_median=True), precision=2)))
    print('\n'.join(ut.align_lines(lines, '=')))

    num_match_edges = np.array(ut.take_column(relabel_stats, 'num_match_edges'))
    num_nonmatch_edges = np.array(ut.take_column(relabel_stats, 'num_nonmatch_edges'))
    flags1 = np.logical_and(num_match_edges > num_nonmatch_edges, num_nonmatch_edges < 3)
    reasonable_infr = ut.compress(splittable_infrs, flags1)

    new_sizes_list = ut.take_column(relabel_stats, 'new_sizes')
    flags2 = [len(sizes) == 2 and sum(sizes) > 4 and (min(sizes) / max(sizes)) > .3
              for sizes in new_sizes_list]
    reasonable_infr = ut.compress(splittable_infrs, flags2)
    print('#reasonable_infr = %r' % (len(reasonable_infr),))

    for infr in ut.InteractiveIter(reasonable_infr):
        annots = ibs.annots(infr.aids)
        edge_to_speeds = annots.get_speeds()
        print('max_speed = %r' % (max(edge_to_speeds.values())),)
        infr.initialize_visual_node_attrs()
        infr.show_graph(use_image=True, only_reviewed=True)

    rest = ~np.logical_or(flags1, flags2)
    nonreasonable_infr = ut.compress(splittable_infrs, rest)
    rng = np.random.RandomState(0)
    random_idx = ut.random_indexes(len(nonreasonable_infr) - 1, 15, rng=rng)
    random_infr = ut.take(nonreasonable_infr, random_idx)
    for infr in ut.InteractiveIter(random_infr):
        annots = ibs.annots(infr.aids)
        edge_to_speeds = annots.get_speeds()
        print('max_speed = %r' % (max(edge_to_speeds.values())),)
        infr.initialize_visual_node_attrs()
        infr.show_graph(use_image=True, only_reviewed=True)

    #import scipy.stats as st
    #conf_interval = .95
    #st.norm.cdf(conf_interval)
    # view-source:http://www.surveysystem.com/sscalc.htm
    #zval = 1.96  # 95 percent confidence
    #zValC = 3.8416  #
    #zValC = 6.6564

    #import statsmodels.stats.api as sms
    #es = sms.proportion_effectsize(0.5, 0.75)
    #sms.NormalIndPower().solve_power(es, power=0.9, alpha=0.05, ratio=1)

    pop = 279
    num_positive = 3
    sample_size = 15
    conf_level = .95
    #conf_level = .99
    vt.calc_error_bars_from_sample(sample_size, num_positive, pop, conf_level)
    print('---')
    vt.calc_error_bars_from_sample(sample_size + 38, num_positive, pop, conf_level)
    print('---')
    vt.calc_error_bars_from_sample(sample_size + 38 / 3, num_positive, pop, conf_level)
    print('---')

    vt.calc_error_bars_from_sample(15 + 38, num_positive=3, pop=675, conf_level=.95)
    vt.calc_error_bars_from_sample(15, num_positive=3, pop=675, conf_level=.95)

    pop = 279
    #err_frac = .05  # 5%
    err_frac = .10  # 10%
    conf_level = .95
    vt.calc_sample_from_error_bars(err_frac, pop, conf_level)

    pop = 675
    vt.calc_sample_from_error_bars(err_frac, pop, conf_level)
    vt.calc_sample_from_error_bars(.05, pop, conf_level=.95, prior=.1)
    vt.calc_sample_from_error_bars(.05, pop, conf_level=.68, prior=.2)
    vt.calc_sample_from_error_bars(.10, pop, conf_level=.68)

    vt.calc_error_bars_from_sample(100, num_positive=5, pop=675, conf_level=.95)
    vt.calc_error_bars_from_sample(100, num_positive=5, pop=675, conf_level=.68)
コード例 #3
0
def dans_splits(ibs):
    """
    python -m ibeis dans_splits --show

    Example:
        >>> # DISABLE_DOCTEST GGR
        >>> from ibeis.other.dbinfo import *  # NOQA
        >>> import ibeis
        >>> dbdir = '/media/danger/GGR/GGR-IBEIS'
        >>> dbdir = dbdir if ut.checkpath(dbdir) else ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS')
        >>> ibs = ibeis.opendb(dbdir=dbdir, allow_newdir=False)
        >>> import guitool_ibeis as gt
        >>> gt.ensure_qtapp()
        >>> win = dans_splits(ibs)
        >>> ut.quit_if_noshow()
        >>> import plottool_ibeis as pt
        >>> gt.qtapp_loop(qwin=win)
    """
    #pair = 9262, 932

    dans_aids = [26548, 2190, 9418, 29965, 14738, 26600, 3039, 2742, 8249,
                 20154, 8572, 4504, 34941, 4040, 7436, 31866, 28291,
                 16009, 7378, 14453, 2590, 2738, 22442, 26483, 21640, 19003,
                 13630, 25395, 20015, 14948, 21429, 19740, 7908, 23583, 14301,
                 26912, 30613, 19719, 21887, 8838, 16184, 9181, 8649, 8276,
                 14678, 21950, 4925, 13766, 12673, 8417, 2018, 22434, 21149,
                 14884, 5596, 8276, 14650, 1355, 21725, 21889, 26376, 2867,
                 6906, 4890, 21524, 6690, 14738, 1823, 35525, 9045, 31723,
                 2406, 5298, 15627, 31933, 19535, 9137, 21002, 2448,
                 32454, 12615, 31755, 20015, 24573, 32001, 23637, 3192, 3197,
                 8702, 1240, 5596, 33473, 23874, 9558, 9245, 23570, 33075,
                 23721,  24012, 33405, 23791, 19498, 33149, 9558, 4971,
                 34183, 24853, 9321, 23691, 9723, 9236, 9723,  21078,
                 32300, 8700, 15334, 6050, 23277, 31164, 14103,
                 21231, 8007, 10388, 33387, 4319, 26880, 8007, 31164,
                 32300, 32140]

    is_hyrbid = [7123, 7166, 7157, 7158, ]  # NOQA
    needs_mask = [26836, 29742]  # NOQA
    justfine = [19862]  # NOQA

    annots = ibs.annots(dans_aids)
    unique_nids = ut.unique(annots.nids)
    grouped_aids = ibs.get_name_aids(unique_nids)
    annot_groups = ibs._annot_groups(grouped_aids)

    split_props = {'splitcase', 'photobomb'}
    needs_tag = [len(split_props.intersection(ut.flatten(tags))) == 0 for tags in annot_groups.match_tags]
    num_needs_tag = sum(needs_tag)
    num_had_split = len(needs_tag) - num_needs_tag
    print('num_had_split = %r' % (num_had_split,))
    print('num_needs_tag = %r' % (num_needs_tag,))

    #all_annot_groups = ibs._annot_groups(ibs.group_annots_by_name(ibs.get_valid_aids())[0])
    #all_has_split = [len(split_props.intersection(ut.flatten(tags))) > 0 for tags in all_annot_groups.match_tags]
    #num_nondan = sum(all_has_split) - num_had_split
    #print('num_nondan = %r' % (num_nondan,))

    from ibeis.algo.graph import graph_iden
    from ibeis.viz import viz_graph2
    import guitool_ibeis as gt
    import plottool_ibeis as pt
    pt.qt4ensure()
    gt.ensure_qtapp()

    aids_list = ut.compress(grouped_aids, needs_tag)
    aids_list = [a for a in aids_list if len(a) > 1]
    print('len(aids_list) = %r' % (len(aids_list),))

    for aids in aids_list:
        infr = graph_iden.AnnotInference(ibs, aids)
        infr.initialize_graph()
        win = viz_graph2.AnnotGraphWidget(infr=infr, use_image=False,
                                          init_mode='rereview')
        win.populate_edge_model()
        win.show()
        return win
    assert False
コード例 #4
0
def make_name_graph_interaction(ibs,
                                nids=None,
                                aids=None,
                                selected_aids=[],
                                with_all=True,
                                invis_edges=None,
                                ensure_edges=None,
                                use_image=False,
                                temp_nids=None,
                                **kwargs):
    """
    CommandLine:
        python -m ibeis --tf make_name_graph_interaction --db PZ_MTEST \
            --aids=1,2,3,4,5,6,7,8,9 --show

        python -m ibeis --tf make_name_graph_interaction --db LEWA_splits \
                --nids=1 --show --split

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.viz.viz_graph import *  # NOQA
        >>> import ibeis
        >>> import plottool as pt
        >>> exec(ut.execstr_funckw(make_name_graph_interaction), globals())
        >>> defaultdb='testdb1'
        >>> ibs = ibeis.opendb(defaultdb=defaultdb)
        >>> aids = ut.get_argval('--aids', type_=list, default=None)
        >>> nids = ut.get_argval('--nids', type_=list, default=ibs.get_valid_nids()[0:5])
        >>> nids = None if aids is not None else nids
        >>> with_all = not ut.get_argflag('--no-with-all')
        >>> make_name_graph_interaction(ibs, nids, aids, with_all=with_all)
        >>> #pt.zoom_factory()
        >>> ut.show_if_requested()
    """
    if aids is None and nids is not None:
        aids = ut.flatten(ibs.get_name_aids(nids))
    elif nids is not None and aids is not None:
        aids += ibs.get_name_aids(nids)
        aids = ut.unique(aids)

    if with_all:
        nids = ut.unique(ibs.get_annot_name_rowids(aids))
        aids = ut.flatten(ibs.get_name_aids(nids))

    #aids = aids[0:10]

    nids = ibs.get_annot_name_rowids(aids)
    #from ibeis.algo.graph import graph_iden
    #infr = graph_iden.AnnotInference(aids, nids, temp_nids)  # NOQA
    #import utool
    #utool.embed()

    from ibeis.algo.graph import graph_iden
    infr = graph_iden.AnnotInference(ibs, aids, nids, temp_nids)
    infr.initialize_graph()
    #infr.apply_scores()
    #infr.apply_weights()
    if ut.get_argflag('--cut'):
        infr.apply_all()

    #import guitool as gt
    #gt.ensure_qtapp()
    #print('infr = %r' % (infr,))
    #win = test_qt_graphs(infr=infr, use_image=use_image)
    #self = win
    #gt.qtapp_loop(qwin=win, freq=10)

    self = AnnotGraphInteraction(infr,
                                 selected_aids=selected_aids,
                                 use_image=use_image)
    self.show_page()
    self.show()
    return self